www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Dimension und Basis
Dimension und Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dimension und Basis: HIlfestellung
Status: (Frage) beantwortet Status 
Datum: 13:48 Mo 12.12.2005
Autor: rotespinne

Hallo!

Ich hätte nur eine kurze Frage zum Verständnis problem.

Wenn ich  [mm] U_{1} [/mm] und  [mm] U_{2} [/mm] gegeben habe und soll  [mm] U_{1} [/mm] +  [mm] U_{2}, U_{1} \cap U_{2} [/mm] angeben, wie gehe ich da vor?

Wäre über ein paar Tipps sehr dankbar!!!!!!!

        
Bezug
Dimension und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Mo 12.12.2005
Autor: angela.h.b.

>
>  
> Wenn ich  [mm]U_{1}[/mm] und  [mm]U_{2}[/mm] gegeben habe und soll  [mm]U_{1}[/mm] +  
> [mm]U_{2}, U_{1} \cap U_{2}[/mm] angeben, wie gehe ich da vor?

Hallo,

so wie's hier steht, würde ich einfach nur die Definitionen von [mm] U_{1} +U_{2} [/mm] und [mm] U_{1} \cap U_{2} [/mm] angeben.

Aber ich nehme einmal an, daß Du Konkreteres vorliegen hast...
[mm] U_1+U_2 [/mm] und [mm] U_1 \cup U_2 [/mm] sind Vektorräume, also haben sie jeweils eine Basis, welche Du bestimmen und angeben solltest.

Gruß v. Angela




Bezug
                
Bezug
Dimension und Basis: rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:22 Mo 12.12.2005
Autor: rotespinne

Hallo Angela!

Genau mein  [mm] U_{1} [/mm] besteht aus 3 Vektoen, mein  [mm] U_{2} [/mm] aus drei Vektoren. Wenn ich nun die Basis von  [mm] U_{1} [/mm] +  [mm] U_{2} [/mm] bestimmen soll, muss ich dann ein ganz normales Gleichungssystem aufstellen indem ich alle 5 Vektoren addiere??????

Oder wie ist das gemeint?

Bezug
                        
Bezug
Dimension und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Mo 12.12.2005
Autor: angela.h.b.


> Hallo Angela!
>  
> Genau mein  [mm]U_{1}[/mm] besteht aus 3 Vektoen, mein  [mm]U_{2}[/mm] aus
> drei Vektoren.

Momentchen mal: das wären ja ziemlich kleine Vektorräume...

Könnte es vielleicht sein, daß nicht [mm] U_1 [/mm] aus drei Vektoren besteht, sondern daß [mm] U_1 [/mm] von drei Vektoren erzeugt wird??? Und [mm] U_2 [/mm] genauso???

Wenn das so ist, könnte man erstmal die Basen der [mm] U_i [/mm] bestimmen.

Dann würde ich die Basis von [mm] U_1 [/mm] nehmen, und gucken, welche der Basisvektoren von [mm] U_2 [/mm] ich dazugeben kann, ohne daß es linear abhängig wird.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]