Dimension von Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien
$ U = Span [mm] \{\vektor{1\\3\\-2\\2\\3},\vektor{1\\4\\-3\\4\\2},\vektor{2\\3\\-1\\-2\\9}\}$ [/mm] und
[mm] $W=\{S\in\IR^5:S_{1}-S_{2}=S_{1}-2S_{4}-S_{5}=S_{3}=0\}$
[/mm]
Unterräume des [mm] $\IR^5$. [/mm] Berechnen sie die Dimension von $U+W$ und [mm] $U\cap [/mm] W$ und bestimmen Sie jeweils eine Basis. Ergänzen Sie die Basis von [mm] $U\cap [/mm] W$ zu Basen von U und W. Ist die Summe U+W direkt? |
Hallo liebes Forum!
So die Aufgabe geht ja eigentlich. Ich benutze die Dimensonsformel $dim [mm] U+W=dimU+dimW-dimU\cap [/mm] W$.
Die Dimension von [mm] $U\cap [/mm] W$ hab ich errechnet, sollte 0 sein, da nur der Nullvektor in beiden enthalten ist (Gleichungssystem aufgestellt). Dim U ist 2, Einfahc mit Gauß-Elimination die Vektoren überprüfen, stellt man fest einer ist überflüssig, damit habe ich auch schon eine Basis für U.
Jetzt kommt mein Problem. Welchen Ansatz mache ich um die Dimension von W zu bestimmen? Eigentlich muss ich ja eine Basis finden, hatte überlegt 5 Vektoren aufzustellen, die die Gleichung erfüllen und dann zu schauen welche ich raushauen kann... aber ich denke nicht, dass mir das etwas bringt, da ich ja auch 5 linear abhängige haben könnte.
Zudem verstehe ich das mit der Basisergänzung nicht... Die Basis von [mm] $U\cap [/mm] W$ wäre ja der Nullvektor und damit kann ich das ja soweiso zu jeder beliebigen Basis ergänzen.
Druckfehler oder Denkfehler/Rechenfehler?
Liebe Grüße
Angelnoir
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:01 Mo 24.01.2011 | Autor: | statler |
Hallo!
> [mm]W=\{S\in\IR^5:S_{1}-S_{2}=S_{1}-2S_{4}-S_{5}=S_{3}=0\}[/mm]
> Unterräume des [mm]\IR^5[/mm]. Berechnen sie die Dimension von [mm]U+W[/mm]
> und [mm]U\cap W[/mm] und bestimmen Sie jeweils eine Basis. Ergänzen
> Sie die Basis von [mm]U\cap W[/mm] zu Basen von U und W. Ist die
> Summe U+W direkt?
> Jetzt kommt mein Problem. Welchen Ansatz mache ich um die
> Dimension von W zu bestimmen?
Wie sieht denn ein allgemeiner Vektor in W aus?
Antwort: s = [mm] ($s_1$, $s_1$, [/mm] 0, [mm] $s_4$, $s_1 [/mm] - [mm] 2s_4$)
[/mm]
Wieviele Koordinaten kannst du also frei wählen? Und wie findest du jetzt eine möglichst einfache Basis? Die offenen Fragen sind für dich.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Ich denke eine mögliche Basis wäre: [mm] $B=\{\vektor{1\\1\\0\\0\\1},\vektor{0\\0\\0\\1\\-2}\}$
[/mm]
Das müsste es theoretisch sein und damit hätte ich Dimension von 2 für W, insgesamt also: 2+2=4 also Dim U+W = 4.
Noch eine Frage zum Verständnis: Der Vektorraum U + W sind alle Vektoren aus U, alle aus W und alle die ich durch Linearkombinationen von U und W bekomme, nicht wahr? reicht es dann nicht die Basen von U und W zusammenzuwerfen?
Grüße zurück nach Hamburg :)
Angelnoir
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:00 Di 25.01.2011 | Autor: | statler |
Guten Morgen!
> Noch eine Frage zum Verständnis: Der Vektorraum U + W
> sind alle Vektoren aus U, alle aus W und alle die ich durch
> Linearkombinationen von U und W bekomme, nicht wahr? reicht
> es dann nicht die Basen von U und W zusammenzuwerfen?
Das gibt i. a. ein Erzeugendensystem und in diesem Fall wg. U [mm] $\cap$ [/mm] W = [mm] $\emptyset$ [/mm] sogar eine Basis.
Gruß aus HH-Harburg
Dieter
|
|
|
|