Dimensionsformel < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seite 1:
http://img172.imageshack.us/img172/2396/seite1lj8.jpg
Seite 2:
http://img440.imageshack.us/img440/2395/seite2fu0.jpg
|
Guten Tag,
ich habe ein Problem mit dem Beweis für die Dimensionsformel für
Untervektorräume. Es handelt sich um ein Verständnisproblem.
Die problematischen Aussagen sind auf den Bildern rot unterstrichen.
Zunächst: Wie hat man sich die Summe von zwei Vektorräumen
bildlich vorzustellen? "Wie sieht die Ebene aus, wenn man zwei
Ebenen addiert?"
Dann: Warum ist die lineare Kombination von z ein Element des
Durchschnitts der beiden "Ebenen" (jaja...Untervektorräume...ich weiß--- ^^) ? Also wenn ich mir die Skizze ansehe, dann sind alle Linearkombinationen von z in U2. Die Linearkombinationen von
v sind dagegen im Schnitt der "Ebenen" zu finden.
Also die Argumentation die darauf folgt scheint mir zwar plausibel
--- nur die Skizze irritiert mich total 0o 0o 0o ...
ich wäre über hilfe sehr dankbar
beste grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:41 Do 28.08.2008 | Autor: | Vreni |
Hallo Thomas,
zu deiner ersten Frage: Wenn du zwei Untervektorräume [mm] U_1 [/mm] und [mm] U_2 [/mm] hast, mit der Basis [mm] a_1,\dots,a_s [/mm] von [mm] U_1 [/mm] und der Basis [mm] b_1,\dots,b_t [/mm] von [mm] U_2, [/mm] dann ist meines Wissens nach [mm] U_1+U_2 [/mm] definiert als [mm] L(a_1,\dots,a_s, b_1,\dots,b_t). [/mm] Wie habt ihr denn [mm] U_1+U_2 [/mm] definiert?
Am besten stellst du es dir an einem einfachen Beispiel im [mm] R^3 [/mm] vor: Du hast zwei Geraden [mm] g_1 [/mm] und [mm] g_2, [/mm] die nicht parallel sind. Dann ist [mm] g_1+g_2 [/mm] die Ebene, in der diese beiden Geraden liegen. Soweit klar?
Zweite Frage: Die Folgerung, die hier gezogen wird, lässt sich nicht aus der Zeichnung nachvollziehen und gilt auch nicht allgemein für jede Linearkombination der [mm] z_i [/mm] s, sondern eben speziell für die, für die die Gleichung
[mm] \lambda_1 v_1+\dots+\lambda_r v_r+\mu_1 w_1+\dots+\mu_s w_s +\nu_1 z_1+\dots+\nu_t z_t=0
[/mm]
gilt.
Wenn man jetzt alles, was nicht Linearkombination der [mm] z_i [/mm] s ist, auf die rechte Seite bringt (wie in der Zeile unter deier zweiten roten):
[mm] \nu_1 z_1+\dots+\nu_t z_t=-\lambda_1 v_1-\dots-\lambda_r v_r-\mu_1 w_1-\dots-\mu_s w_s
[/mm]
sieht man, dass sich eben jene [mm] z_i-Linearkombination [/mm] mit der Basis von [mm] U_1 [/mm] (den [mm] v_i [/mm] 's und [mm] w_i [/mm] 's) darstellen lässt, und deswegen in [mm] U_1 [/mm] liegt. Und da die [mm] z_i [/mm] ja in der Basis von [mm] U_2 [/mm] enthalten sind, liegt die Linearkombination auch in [mm] U_2, [/mm] also in [mm] U_1 \cap U_2.
[/mm]
Gruß,
Vreni
|
|
|
|
|
hmmm...
ist das nicht irreführend mit der Skizze ...
ich meine....warum gilt die Skizze denn nicht für die
von dir erwähnte Linearkombination...es handelt sich doch
immer um den gleichen "Versuch" 0o 0o 0o ???
Kann man sich das nicht irgendwie veranschaulichen....???
Also ich kann mir momentan nicht bildlich vorstellen,
wie z aus v und w linear kombinierbar sein soll 0o ... ( mal
von der Formel abgesehen, die genau das ja behauptet )
ich freue mich auf die antwort
beste grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:18 Do 28.08.2008 | Autor: | Vreni |
Das Bild ist da, um zu veranschaulichen, was mit den v,w und z gemeint ist.
Im Beweis musst du jetzt das zeigen, was du schon rein Vorstellungsmäßig siehst: dass die Vektoren linear unabhängig sind, du eben nicht z aus v und w linearkombinieren kannst
Und dazu nimmst du erstmal an, sie sind es nicht, also man kann eben eine Linearkombination der [mm] z_i [/mm] (die nicht trivial, also=0 ist) durch die Basis von [mm] U_1 [/mm] darstellen.
Und im Laufe des Beweises findest du dann eben heraus, dass das nur geht, wenn alle Koeffizienten [mm] \lambda, \mu, \nu [/mm] =0 sind, also du eine triviale Aussage dastehen hast.
Deswegen sind die Vektoren linear unabhängig, was zu zeigen war.
Gruß,
Vreni
|
|
|
|