Diophantische Gleichung < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:13 Mi 25.05.2011 | Autor: | katrin10 |
Aufgabe | Gegeben ist eine natürliche Zahl n, die sich auf zwei unterschiedliche Arten als Summe zweier Quadratzahlen darstellen lässt, d. h. [mm] n=x^2+y^2=z^2+w^2 [/mm] mit {x,y} [mm] \not= [/mm] {z,w}.
1. O.b.d.A. kann man [mm] x\equiv [/mm] z (mod 2) und [mm] y\equiv [/mm] w (mod 2) voraussetzen.
2. Die Gleichungen [mm] \bruch{x+z}{2}=ac, \bruch{z-x}{2}=bd, \bruch{y+w}{2}=bc [/mm] und [mm] \bruch{y-w}{2}=ad [/mm] haben ganzzahlige Lösungen a,b,c,d. |
Hallo,
bei Teil 2 habe ich mir überlegt, dass nach Umstellung der Gleichung [mm] x^2+y^2=z^2+w^2 [/mm] gilt (z-x)(z+x)=(y+w)(y-w)=s, wobei s eine ganze Zahl ist, die man eindeutig in Primfaktoren zerlegen kann. Das Produkt aller Primfaktoren, die z+x und y-w teilen, könnte man als a bezeichnen. Für b,c und d könnte man analog vorgehen. Da (z-x)(z+x)=(y+w)(y-w), müssen alle Teiler von (z+x) entweder y+w oder y-w teilen.
Insgesamt bin ich mir aber nicht sicher, wie ich diese Lösungsidee am besten aufschreiben könnte.
Vielen Dank.
Katrin
|
|
|
|
Hallo Katrin,
super gelöst!
> Gegeben ist eine natürliche Zahl n, die sich auf zwei
> unterschiedliche Arten als Summe zweier Quadratzahlen
> darstellen lässt, d. h. [mm]n=x^2+y^2=z^2+w^2[/mm] mit {x,y} [mm]\not=[/mm]
> {z,w}.
> 1. O.b.d.A. kann man [mm]x\equiv[/mm] z (mod 2) und [mm]y\equiv[/mm] w (mod
> 2) voraussetzen.
> 2. Die Gleichungen [mm]\bruch{x+z}{2}=ac, \bruch{z-x}{2}=bd, \bruch{y+w}{2}=bc[/mm]
> und [mm]\bruch{y-w}{2}=ad[/mm] haben ganzzahlige Lösungen a,b,c,d.
>
> Hallo,
> bei Teil 2 habe ich mir überlegt, dass nach Umstellung der
> Gleichung [mm]x^2+y^2=z^2+w^2[/mm] gilt (z-x)(z+x)=(y+w)(y-w)=s,
> wobei s eine ganze Zahl ist, die man eindeutig in
> Primfaktoren zerlegen kann. Das Produkt aller Primfaktoren,
> die z+x und y-w teilen, könnte man als a bezeichnen.
Fast. Du hast allerdings die "Halben" aus der Aufgabenstellung noch übersehen. Das lässt sich aber leicht reparieren.
> Für
> b,c und d könnte man analog vorgehen. Da
> (z-x)(z+x)=(y+w)(y-w), müssen alle Teiler von (z+x)
> entweder y+w oder y-w teilen.
> Insgesamt bin ich mir aber nicht sicher, wie ich diese
> Lösungsidee am besten aufschreiben könnte.
Verwende die ggT-Schreibweise.
Grüße
reverend
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 18:52 Mi 25.05.2011 | Autor: | katrin10 |
Hallo,
vielen Dank für die schnelle Antwort.
Da nach 1. [mm] x\equiv [/mm] z (mod 2) gilt, ist x+z durch 2 teilbar und damit ist der Bruch eine ganze Zahl.
Ist es möglich beispielsweise [mm] a:=ggt(\bruch{x+z}{2},\bruch{y-w}{2}) [/mm] und für die anderen Variablen dann analog zu definieren oder muss ich weiterhin mit Primfaktoren arbeiten?
Katrin
|
|
|
|
|
Hallo,
> vielen Dank für die schnelle Antwort.
> Da nach 1. [mm]x\equiv[/mm] z (mod 2) gilt, ist x+z durch 2 teilbar
> und damit ist der Bruch eine ganze Zahl.
Ja, klar.
> Ist es möglich beispielsweise
> [mm]a:=ggt(\bruch{x+z}{2},\bruch{y-w}{2})[/mm] und für die anderen
> Variablen dann analog zu definieren oder muss ich weiterhin
> mit Primfaktoren arbeiten?
Genau so kannst Du vorgehen. Primfaktoren sind nicht nötig, sie verstellen hier eher den Blick aufs Ganze.
Soweit ich sehe, hast Du diese Aufgabe damit auch schon komplett gelöst.
Respekt!
...und nochmal Grüße
reverend
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:10 Mi 25.05.2011 | Autor: | reverend |
Ach so, eins habe ich vergessen:
Man spart eine Menge Schreibarbeit und gestaltet die Lösung übersichtlicher, wenn man ganz am Anfang Hilfvariable einführt, also [mm] A:=\bruch{x+z}{2} [/mm] etc.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:51 Mi 25.05.2011 | Autor: | katrin10 |
Vielen Dank für die Hilfe.
|
|
|
|