www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Diskusion einer Funktion
Diskusion einer Funktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Diskusion einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:21 Mi 29.09.2004
Autor: triple

Hallo,

meine Frage ist zu folgender Aufgabe:
Diskutieren Sie f(x) = [mm] x^4 [/mm] + 5 [mm] x^3 [/mm] + 6 [mm] x^2 [/mm]

Ich würde gern eure Ergebnisse dazu wissen, den ich habe dazu folgende Werte:
Nullstellen: xo/1 = 0 ; xo/2 = -2 ; xo/3 = -3

Extremstellen: xe/1 = 0 ; xe/2 = -1,157 ; xe/3 = -2,593
das ergibt: H(-1,157|2,079) und H(-2,593|1,623)

Wendestellen: W(-0,5|0,9375) [ r -> l ] und W(-2|0) [ l -> r ]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Diskusion einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Mi 29.09.2004
Autor: informix

Hallo triple,
ich habe mal schnell mit DERIVE nachgerechnet
und keine Fehler gefunden:
[ok]


Bezug
                
Bezug
Diskusion einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Mi 29.09.2004
Autor: triple

Danke für die Überprüfung.
Mit einem Java online Rechner habe ich die Nullstellen mal überprüft, den dort gibt der mir xo/1 = -2 ; xo/2 = -3 ; xo/3 = 0 und xo/4 = 0 aus.

Bezug
                        
Bezug
Diskusion einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:37 Mi 29.09.2004
Autor: informix


> Danke für die Überprüfung.
>  Mit einem Java online Rechner habe ich die Nullstellen mal
> überprüft, den dort gibt der mir xo/1 = -2 ; xo/2 = -3 ;
> xo/3 = 0 und xo/4 = 0 aus.
>  

Stimmt auch: denn bei $x=0$ liegt eine doppelte Nullstelle vor.
Weißt du was das ist?
Du kannst bei dem Term [mm] $x^2$ [/mm] ausklammern:
[mm] $x^2(x^2+5x+6)=0$ [/mm]
damit ergeben sich die oben genannten 4 Nullstellen.
[Dateianhang nicht öffentlich]
Übrigens:
eine doppelte Nullstelle ist stets auch eine Extremstelle!
Denk mal nach, warum.
Betrachte die 1. Ableitung der Funktion.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                                
Bezug
Diskusion einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:42 Mi 29.09.2004
Autor: triple

Ich hab die Funktion nicht ausgeklammert, sondern x² + 5x + 6 gerechnet, da es ja eine Biquadratische Formel ist, aber mit dem ausklammern kommt das schon hin, dann habe ich ja xo/1 und xo/2 = 0 und danach halt die beiden anderen per p-q-Formel.
Da ich ja bei der ersten Ableitung auch ausklammere, bekomme ich ein: xe/0 = 0, bloß wie ist das definiert? Denn > 0 ist ja Hochpunkt und < 0 Tiefpunkt! Was mach ich bei ? (0|0)?

Bezug
                                        
Bezug
Diskusion einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Mi 29.09.2004
Autor: Disap


> Ich hab die Funktion nicht ausgeklammert, sondern x² + 5x +
> 6 gerechnet, da es ja eine Biquadratische Formel ist, aber
> mit dem ausklammern kommt das schon hin, dann habe ich ja
> xo/1 und xo/2 = 0 und danach halt die beiden anderen per
> p-q-Formel.
>  Da ich ja bei der ersten Ableitung auch ausklammere,
> bekomme ich ein: xe/0 = 0, bloß wie ist das definiert? Denn
> > 0 ist ja Hochpunkt und < 0 Tiefpunkt! Was mach ich bei ?
> (0|0)?
>  

Wenn f'(x)=0 ist, dann errechnet man ja den Extrempunkt! im Extrempunkt ist die Steigung gleich Null.
Den Wert, den man dann herausbekommt, ist der X des (Extrem)Punkts.
Setzt man diesen in die zweite Ableitung ein:

f''(x) = 0

Tiefpunkt bei f''(xe)=0 > 0
Hochpunkt bei f''(xe)=0 < 0


(Ursprünglich stand hier, dass wenn man für f''(xe) = 0 Null herausbekommt, dass xe dann kein Extrempunkt ist.   Diese Aussage ist falsch. Für die Beantwortung der Frage: "Was mach ich bei (0|0)?" - siehe Mitteliung von Marcel)

Bezug
                                                
Bezug
Diskusion einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:07 Mi 29.09.2004
Autor: Marcel

Hallo Disap,

> ...
> Wenn f'(x)=0 ist, dann errechnet man ja den Extrempunkt! im
> Extrempunkt ist die Steigung gleich Null.
>  Den Wert, den man dann herausbekommt, ist der X des
> (Extrem)Punkts.
>  Setzt man diesen in die zweite Ableitung ein:
>  
> f''(x) = 0
>  
> und bekommt 0 heraus, so haben wir keinen Extrempunkt

Das stimmt so nicht. Gegenbeispiel:
[mm] $f_1: \IR \rightarrow \IR$ [/mm] definiert durch [mm] $f_1(x):=x^4$. [/mm] Hier ist
[mm] $f_1^{'}(x)=0$ [/mm]

[mm] $\gdw$ [/mm]

$x=0$,aber auch

[mm] $f_1^{''}(0)=0$. [/mm]
Trotzdem ist [mm] $x_0=0$ [/mm] eine Extremstelle (genauer: lokale und sogar globale Minimalstelle) der Funktion [mm] $f_1$. [/mm]

Wenn du eine reellwertige Funktion $f$ einer reellen Variablen hast, wobei [m]x_0 \in \IR[/m] mit [mm] $f'(x_0)=0$ [/mm] und [mm] $f''(x_0)=0$, [/mm] dann kannst du herausfinden, ob [mm] $x_0$ [/mm] tatsächlich Extremstelle ist, indem du die Funktionswerte 'nahe bei [m]x_0[/m]' untersuchst:
Wenn du nachweisen kannst, dass für ein genügend kleines [m]\varepsilon > 0[/m] stets $f(x) [mm] \ge f(x_0)$ [/mm] für alle $ x [mm] \in$ [x_0-\varepsilon;x_0+\varepsilon] [/mm] gilt, so wäre [mm] $x_0$ [/mm] eine Minimalstelle (mindestens lokaler Art).
Analog kann man das auf den Fall der Maximalstelle übertragen.

Oder aber du versuchst, das Monotonieverhalten 'nahe bei [mm] $x_0$' [/mm] herauszufinden, ich erläutere etwas genauer, wie ich das meine:
Wäre zum Beispiel für ein genügend kleines [m]\varepsilon > 0[/m] die Funktion im Intervall [mm] [x_0-\varepsilon;x_0] [/mm] monoton fallend und im Intervall [mm] [x_0;x_0+\varepsilon] [/mm] monoton wachsend, so wäre [mm] $x_0$ [/mm] eine Minimalstelle (mindestens lokaler Art) von $f$.
(Wieder Analoges für Maximalstelle übertragbar.)
Es gibt bestimmt auch noch andere 'Tests', die hier erwähnten sind mir gerade auf die Schnelle eingefallen. ;-)

PS: Es ist des öfteren nützlich, dass man aus der Ableitung einer reellwertigen Funktion einer reellen Variablen auf das Monotonieverhalten schließen kann. Falls ihr diesbezüglich schon einmal etwas gehört habt, dann schaut es euch noch einmal an und prägt es gut ein! ;-)
  
Liebe Grüße
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]