Dreieck ins Standarddreieck < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien [mm] \vec x_{i} [/mm] := [mm] (x_{i}, y_{i})^T [/mm] , i = 0,1,2 die drei Ecken eines Dreiecks [mm] \tau [/mm] mit positiver Orientierung und [mm] \vec g_{i}:=\vec x_{i}- \vec x_{0}, [/mm] i = 1,2 zwei aufspannende Vektoren. Sei [mm] \Psi [/mm] eine Abbildung, die dieses Dreick auf das Standarddreieck T := { [mm] (\xi, \eta);0 \le \xi,\eta \le [/mm] 1, [mm] \xi+\eta \le1 [/mm] } überführt.
(a) Geben Sie die Abbildungsvorschrift zu [mm] \Psi [/mm] : [mm] \tau \rightarrow [/mm] T an.
(b) Zeigen Sie:
[mm] J\Psi(x) [/mm] = [mm] \bruch{1}{2V(\tau)} {\vec a_{2}^{T} \choose \vec a_{1}^{T}},
[/mm]
wobei für i = 1,2 der Vektor [mm] \vec a_{i} [/mm] jeweils der äußere Normalenvektor an [mm] \vec g_{i} [/mm] ist. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Erstmal wurden uns schon folgende Hinweise gegeben:
- mit [mm] {\vec a_{2}^{T} \choose \vec a_{1}^{T}} [/mm] ist [mm] \begin{pmatrix}
a_{2}[1] & a_{2}[2] \\
a_{1}[1] & a_{1}[2]
\end{pmatrix} [/mm] gemeint
- das Standarddreieck hat die Koordinaten (0,0), (1,0) und (0,1), die aufspannenden Vektoren sind [mm] \eta [/mm] und [mm] \xi
[/mm]
Ich hab mir nun sowohl das gegebene Dreick mit den Vektoren [mm] \vec x_{i}, [/mm] als auch das Standarddreieck skizziert, damit ich mir das ganze irgendwie bildlich vorstellen kann.
Das Problem ist nun, dass ich eigenlich noch nie eine Abbildungsvorschrift finden/angeben musste. Das heißt, ich hab nur bedingt eine Idee, wie ich an die Sache überhaupt rangehe.
Ich hab nun versucht mir erstmal irgendwie bildlich zu überlegen, wie das Dreieck in das Standarddreieck überführt wird und dadurch eine Abbildungsvorschrift zu finden. Das hat leider nicht geklappt.
Ich muss ja nun irgendwie eine "Regel" finden, die alle [mm] \vec x_{i} [/mm] in die Koordinaten des Standarddreicks überführt und gleichzeitig alle [mm] \vec g_{i} [/mm] in die [mm] \xi [/mm] 's und [mm] \eta [/mm] 's überführt, oder?
Ich hab nur leider gar keine Vorstellung davon, wie so eine Abbildungsvorschrift aussehen muss.
Das Problem ist nun also:
Wie finde ich heraus, wie meine Abbildungsvorschrift aussieht und wie finde ich heraus, wie sie konkret für dieses Problem lautet?
Und wenn ich mich nicht irre, kann ich die (b) ohne (a) nicht bearbeiten, denn ich brauche ja erstmal die Funktion [mm] \Psi, [/mm] um die Jordan-Matrix zu berechnen...?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:20 Fr 20.04.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|