Dreiecksungleichung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Sei k [mm] \ge [/mm] 2 fest gegeben. Dann existiert kein L > 0, so daß für alle x, y [mm] \in \IR_0^+ [/mm] gilt:
[mm] |^k\wurzel{x} [/mm] − [mm] ^k\wurzel{y}| \le [/mm] L · |x − y|. |
Hallo,
ich habe versucht obige Aufgabe mit der Dreiecksungleichung zu lösen, komme aber auch keine vernünftige Lösung. Kann mir vielleicht jemand die ersten beiden Schritte zeigen, damit ich dann weitermachen kann?
Ich muss ja im Grunde darauf kommen, dass die Dreiecksungleichung auf einen Widerspruch stößt, richtig? Nur um sicherzugehen, dass ich das hier schon mal richtig versucht habe.
Danke im Voraus für die Mühe
|
|
|
|
Hallo,
ich weiß nicht ob du das schon gehabt hast, aber du sollst ja im prinzip zeigen, dass die Funktion $f(x) = [mm] \wurzel[k]{x}$ [/mm] nicht Lipschitz-stetig ist.
Versuche am bessten ersteinmal aus [mm] |\wurzel[k]{x} - \wurzel[k]{y}| [/mm] ein $(x-y)$ auszuklammer (das geht zum Bsp. über Polynomdivision). Und das was dann dabei rauskommt, also was übrig bleibt möchtest du dann zu einer konstanten aufschätzen. Dann wirst du aber sehen, dass der Rest für $x,y [mm] \in \IR_{+}$ [/mm] beliebig groß werden kan.
lg Kai
|
|
|
|