Dreiecksungleichung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
|
Hallo!
Das entweder $a+b=|a+b|$ oder $-(a+b)=|a+b|$ liegt daran, dass $a+b$ ja entweder eine positive oder eine negative Zahl ist. Und nach Definition ist der Betrag von $a+b$ positiv.
Beim Betrag erstetzt man also einfach das Vorzeichen der Zahl durch $+$. Also ist $|-5|=5$, aber auch $|5|=5$. Deshalb ist $|-5|=(-1)*(-5)$.
Genau das gleiche macht man auch mit $a+b$. Man tauscht evtl. das $-$-Vorzeichen gegen ein $+$-Vorzeichen, indem man die Zahl mit $-1$ malnimmt. Deshalb ist $|a+b|=a+b$, falls [mm] $a+b\ge [/mm] 0$, und $|a+b|=-(a+b)$, falls $a+b<0$.
Ist es dir jetzt klarer geworden?
Gruß, banachella
|
|
|
|