Dynkin-System < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:22 Mo 14.11.2011 | Autor: | jebote |
Aufgabe | Zeigen Sie, dass ein Dynkin-System nicht notwendig eine [mm] \sigma [/mm] -Algebra sein muss.
Hinweis: Es sei X = [mm] \{a_{1}, a_{2}, ..., a_{2k} \} [/mm] eine endliche Menge mit einer geraden Anzahl von Elementen, und es sei [mm] \mathcal{D} [/mm] = [mm] \{ D \subset X : D \mbox{hat eine gerade Anzahl von Elementen} \}. [/mm] |
Hallo,
hoffentlich kann mir jmd. zumindest einen Anstoss zu den Aufgaben geben.
Im Hinweis sind ja die Mengen gegeben, und das [mm] \mathcal{D} [/mm] soll ein Dynkin-System sein, aber scheitert es nicht am zweiten Kriterium mit dem Komplement?
Denn das Komplement muss ja auch in [mm] \mathcal{D} [/mm] enthalten sein. Aber [mm] D^{c} [/mm] (hat ungerade Anzahl an Elementen) [mm] \not\in \mathcal{D} [/mm] ?
Und wo soll dann der Widerspruch auftauchen, dass es eine [mm] \sigma [/mm] -Algebra ist ?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:40 Mo 14.11.2011 | Autor: | vivo |
Hallo,
überleg Dir mal was alles in [mm] $\mathcal{D}$ [/mm] drin ist. Ist es durchschnittstabil? Muss eine [mm] $\sigma$-Algebra [/mm] durschnittstabil sein?
Grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:59 Mo 14.11.2011 | Autor: | jebote |
In [mm] \mathcal{D} [/mm] sind die Teilmengen von X enthalten, die eine gerade Anzahl von Elementen hat und der Durchschnitt solcher Mengen muss nicht zwangsweise wieder eine gerade Anzahl an Elementen haben.
Z.B. [mm] D_{1} [/mm] = [mm] \{a_{1}, a_{2}\} [/mm] und [mm] D_{2} [/mm] = [mm] \{a_{2}, a_{3}, a_{4}, a_{5}\}. [/mm] Beide haben die gleiche Anzahl an Elementen, aber der Durchschnitt hat eine ungerade Anzahl an Elementen.
Ich glaube, dass eine [mm] \sigma [/mm] -Algebra nicht Durchschnittsstabil sein muss.
Sind ja nur diese drei Eigenschaften, oder irre ich mich hier gewaltig?
Denn ein Dynkin-System, welches Durchschnittsstabil ist, ist eine [mm] \sigma [/mm] -Algebra.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:54 Mo 14.11.2011 | Autor: | fred97 |
> In [mm]\mathcal{D}[/mm] sind die Teilmengen von X enthalten, die
> eine gerade Anzahl von Elementen hat und der Durchschnitt
> solcher Mengen muss nicht zwangsweise wieder eine gerade
> Anzahl an Elementen haben.
> Z.B. [mm]D_{1}[/mm] = [mm]\{a_{1}, a_{2}\}[/mm] und [mm]D_{2}[/mm] = [mm]\{a_{2}, a_{3}, a_{4}, a_{5}\}.[/mm]
> Beide haben die gleiche Anzahl an Elementen, aber der
> Durchschnitt hat eine ungerade Anzahl an Elementen.
> Ich glaube, dass eine [mm]\sigma[/mm] -Algebra nicht
> Durchschnittsstabil sein muss.
Oh doch, das ist sie
FRED
> Sind ja nur diese drei Eigenschaften, oder irre ich mich
> hier gewaltig?
> Denn ein Dynkin-System, welches Durchschnittsstabil ist,
> ist eine [mm]\sigma[/mm] -Algebra.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:24 Fr 18.11.2011 | Autor: | jebote |
Danke für die Hilfe.
|
|
|
|