www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - EX einer symmetrischen ZVA
EX einer symmetrischen ZVA < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

EX einer symmetrischen ZVA: Unklarheiten
Status: (Frage) beantwortet Status 
Datum: 19:03 Do 07.04.2005
Autor: crowmat

Hallo! und zwar soll ich folgendes zeigen:
Sei X eine stetige, um c aus R symmetrische Zufallsvariable!Zeige, dass EX=c gilt!!!
Ich hab dazu auch schon folgende Lösung im Internet gefunden:
http://www.mathehotline.de/mathe4u/hausaufgaben/messages/9308/382322.html
Nur die Fragen, die derjenige stellt beschäftigen auch mich, ich weiß nicht warum die intervallgrenzen  vertauscht werden bzw. warum f(t)=F(c+t) sind!



        
Bezug
EX einer symmetrischen ZVA: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Fr 08.04.2005
Autor: banachella

Hallo crowmat!

Ich skizziere den Beweis nochmal, damit sich's leichter lesen läßt:
[mm] $E[X]\stackrel{def}=\int_{-\infty}^\infty xf(x)dx\stackrel{t=x-c}=\int_{-\infty}^\infty [/mm] (t+c)f(t+c)dt$.
Außerdem
[mm] $E[X]\stackrel{def}=\int_{-\infty}^\infty xf(x)dx\stackrel{t=c-x}=\int^{-\infty}_\infty- (c-t)f(c-t)dt\stackrel{\otimes}=\int_{-\infty}^\infty (c-t)f(c-t)dt\stackrel{f\ symm.}=\int_{-\infty}^\infty [/mm] (c-t)f(c+t)dt$.
Zusammen gilt dann:
[mm] $2E[X]=\int_{-\infty}^\infty (t+c)f(t+c)dt+\int_{-\infty}^\infty (c-t)f(c+t)dt=\int_{-\infty}^\infty (t+c+c-t)f(c+t)dt=2c\int_{-\infty}^\infty f(c+t)dt\stackrel{s=c+t}=2c\int_{-\infty}^\infty [/mm] f(s)ds=2c$.
Bleibt nur noch die Frage, warum die Gleichheit [mm] $\otimes$ [/mm] gilt. Das ist ein Ergebnis aus der Integrationstheorie: [mm] $\int_a^bf(x)dx=-\int_b^af(x)dx$. [/mm]
Nimm zum Beispiel an, $f$ hätte die Stammfunktion $F$. Dann ist
[mm] $\int_a^bf(x)dx=\big[F(x)\big]^b_a=F(b)-F(a)=-(F(a)-F(b))=-\big[F(x)\big]_b^a=-\int_b^af(x)dx$. [/mm]

Beantwortet das deine Fragen?

banachella

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]