E((X-c)^2) endlich < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:14 Do 10.01.2013 | Autor: | triad |
Aufgabe | Sei X eine diskrete Zufallsvariable, so dass [mm] E(X^2)<\infty. [/mm] Zeige, dass für jedes [mm] c\in\IR [/mm] gilt, dass [mm] E((X-c)^2)<\infty. [/mm] Bestimme dann c so, dass [mm] E((X-c)^2) [/mm] minimal ist. |
Hallo.
Ich habe zunächst die Funktion ausmultipliziert und die Linearität des Erwartungswertes benutzt
[mm] E((X-c)^2) [/mm] = [mm] E(X^2-2cX+c^2) [/mm] = [mm] E(X^2)-2cE(X)+c^2.
[/mm]
[mm] E(X^2)<\infty [/mm] gilt schon n.V., kann man daraus folgern, dass auch [mm] E(X)<\infty [/mm] ist, oder wie kann man hier sonst die Ungleichung zeigen?
[mm] E((X-c)^2) [/mm] ist minimal für c=E(X): [mm] E(X^2)-2cE(X)+c^2 [/mm] = [mm] E(X^2)-2E(X)E(X)+E(X)^2 [/mm] = [mm] E(X^2)-2E(X)^2+E(X)^2 [/mm] = [mm] E(X^2)-E(X)^2. [/mm] Aber warum ist das der minimale Wert?
gruß triad
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:17 Do 10.01.2013 | Autor: | luis52 |
> Sei X eine diskrete Zufallsvariable, so dass [mm]E(X^2)<\infty.[/mm]
> Zeige, dass für jedes [mm]c\in\IR[/mm] gilt, dass
> [mm]E((X-c)^2)<\infty.[/mm] Bestimme dann c so, dass [mm]E((X-c)^2)[/mm]
> minimal ist.
> Hallo.
>
> Ich habe zunächst die Funktion ausmultipliziert und die
> Linearität des Erwartungswertes benutzt
>
> [mm]E((X-c)^2)[/mm] = [mm]E(X^2-2cX+c^2)[/mm] = [mm]E(X^2)-2cE(X)+c^2.[/mm]
>
> [mm]E(X^2)<\infty[/mm] gilt schon n.V., kann man daraus folgern,
> dass auch [mm]E(X)<\infty[/mm] ist,
Ja.
>
> [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?
Leite mal nach $c$ ab ...
vg Luis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:22 Fr 11.01.2013 | Autor: | triad |
Hi und danke für deine Antwort.
> > Sei X eine diskrete Zufallsvariable, so dass [mm]E(X^2)<\infty.[/mm]
> > Zeige, dass für jedes [mm]c\in\IR[/mm] gilt, dass
> > [mm]E((X-c)^2)<\infty.[/mm] Bestimme dann c so, dass [mm]E((X-c)^2)[/mm]
> > minimal ist.
> > Hallo.
> >
> > Ich habe zunächst die Funktion ausmultipliziert und die
> > Linearität des Erwartungswertes benutzt
> >
> > [mm]E((X-c)^2)[/mm] = [mm]E(X^2-2cX+c^2)[/mm] = [mm]E(X^2)-2cE(X)+c^2.[/mm]
> >
> > [mm]E(X^2)<\infty[/mm] gilt schon n.V., kann man daraus folgern,
> > dass auch [mm]E(X)<\infty[/mm] ist,
>
> Ja.
>
> >
> > [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> > [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> > [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?
>
> Leite mal nach [mm]c[/mm] ab ...
>
> vg Luis
>
>
Nagut, wenn ich [mm] E(X^2)-2cE(X)+c^2 [/mm] nach c ableite erhalte ich [mm] (E(X^2)-2cE(X)+c^2)' [/mm] = 2c-2E(X). Nullsetzten liefert die Lösung: 2c-2E(X)=0 [mm] \gdw [/mm] 2c=2E(X) [mm] \gdw [/mm] c=E(X).
Aber warum erhalte ich das gerade durch Ableiten und warum ist das dann jenes c für das ich das Minimum erhalte?
gruß triad
|
|
|
|
|
Hallo triad,
> > >
> > > [mm]E((X-c)^2)[/mm] ist minimal für c=E(X): [mm]E(X^2)-2cE(X)+c^2[/mm] =
> > > [mm]E(X^2)-2E(X)E(X)+E(X)^2[/mm] = [mm]E(X^2)-2E(X)^2+E(X)^2[/mm] =
> > > [mm]E(X^2)-E(X)^2.[/mm] Aber warum ist das der minimale Wert?
> >
> > Leite mal nach [mm]c[/mm] ab ...
> >
> > vg Luis
> >
> >
>
> Nagut, wenn ich [mm]E(X^2)-2cE(X)+c^2[/mm] nach c ableite erhalte
> ich [mm](E(X^2)-2cE(X)+c^2)'[/mm] = 2c-2E(X). Nullsetzten liefert
> die Lösung: 2c-2E(X)=0 [mm]\gdw[/mm] 2c=2E(X) [mm]\gdw[/mm] c=E(X).
> Aber warum erhalte ich das gerade durch Ableiten und warum
> ist das dann jenes c für das ich das Minimum erhalte?
Du kannst das doch als Funktion in der Variable c auffassen, also [mm]f(c)=E[X^2]-2cE[X]+c^2[/mm]
Und wie man Extrema einer Funktion besimmt, weißt du seit der Mittelstufe ...
Prüfe auch noch, ob der gefundene Kandidat [mm]c[/mm] auch wirklich eine Minimalstelle ist ...
>
>
> gruß triad
LG
schachuzipus
|
|
|
|