www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebenenschar
Ebenenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenschar: Wo ist der Fehler?
Status: (Frage) beantwortet Status 
Datum: 15:09 Mi 30.08.2006
Autor: B-LaSh

Aufgabe
Gegeben sind:

[mm] E_{1}:\vec{x}=\vektor{1 \\ 2 \\ a}+r*\vektor{1 \\ -1 \\ 1}+s*\vektor{b \\ c \\ 2} [/mm]
und

[mm] E_{2}:\vec{x}=\vektor{2 \\ 1 \\ 1}+m*\vektor{4 \\ 1 \\ 2}+n*\vektor{d \\ 1 \\ -1} [/mm] .
Wie müssen die reellen Zahlen a,b,c und d gewählt werden, damit sich die beiden Ebenen [mm] E_{1} [/mm] und [mm] E_{2} [/mm] schneiden?

Diese Aufgabe haben wir heute in der Schule gerechnet, sind dabei aber auf etwas Sonderbares gestoßen.
Hier der Lösungsweg:

[mm] \pmat{ 1 & b & -4 & -d & 1 \\ -1 & c & -1 & -1 & -1 \\ 1 & 2 & -2 & 1 & 1-a } [/mm] 1. spalte r, zweite s, dritte m, vierte n, fünfte =

2. auf 3. addiert


[mm] \pmat{ 1 & b & -4 & -d & 1 \\ -1 & c & -1 & -1 & -1 \\ 0 & 2+c & -3 & 0 & -a } [/mm]

1. auf 2. addiert


[mm] \pmat{ 1 & b & -4 & -d & 1 \\ 0 & b+c & -5 & -1-d & 0 \\ 0 & 2+c & -3 & 0 & -a } [/mm]  

soweit stand es an der Tafel. Da in jeder Zeile bei m eine reelle Zahl steht, kann in keiner Zeile ein Widerspruch entstehen. Aus dem selben Grund kann auch keine Nullzeile enstehen. Also sind a,b,c, und d beliebig, da sich alle Ebenen schneiden.
Das war die Erklärung des Lehrers.

Ein Kumpel und ich hatten die Matrix allerdings weiter umgeformt:

2. zeile * (-3) 3. zeile *5   dann 2. auf 3. addiert


[mm] \pmat{ 1 & b & -4 & -d & 1 \\ 0 & b+c & -5 & -1-d & 0 \\ 0 & -3b+2c+10 & 0 & 3+3d & -5a } [/mm]  

Jetzt gibt es unendlich viele Möglichkeiten für Nullzeilen und Widersprüche, und die Ebene schneiden sich auf keinen Fall.

Gibt es irgendwo einen Fehler? (Rechen- oder Denkfehler?)
Oder könnt ihr mir das ganze erklären?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ebenenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Mi 30.08.2006
Autor: B-LaSh

es muss doch an sich einen klaren Fehler irgendwo geben?

Bezug
        
Bezug
Ebenenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:23 Mi 30.08.2006
Autor: B-LaSh

hat denn keiner ne ahnung hier? =((

Bezug
        
Bezug
Ebenenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 23:03 Mi 30.08.2006
Autor: Zwerglein

Hi, B-LaSh,

Zwei Ebenen schneiden sich in einer Geraden, wenn nicht jeweils drei der 4 Richtungsvektoren linear abhängig sind.

Linear abhängig wären Sie in Deinem Fall, wenn sowohl
-3b + 2c + 10 = 0 als auch 3d + 3 = 0 (also d=-1) gilt.
(Ich habe diese Gleichungen auf anderem Weg erhalten, nämlich mittels Determinanten; sie bestätigen jedoch die Lösung Deines Kumpels!)

Zwei Ebenen sind sogar identisch, wenn sowohl alle 4 Richtungsvektoren linear abhängig sind, als auch der Verbindungsvektor der beiden Aufpunkte. Letzteres ergäbe sich für a = 0.

Dein Lehrer hat übersehen, dass die letzte und die vorletzte Zeile identisch sein können
und zwar wenn man a = 0 und d = -1 setzt.
Die verbleibenden Werte der letzten Zeile (2+c und -3) müssen dann nämlich nur noch mit [mm] \bruch{5}{3} [/mm] multipliziert werden.
Die "Unmöglichkeit einer Nullzeile" reicht demnach für die gesuchte Begründung nicht aus!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]