Ed Gilberts Zahlenratespiel < Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 22:48 So 01.04.2012 | Autor: | Tsetsefliege |
Aufgabe | A denkt an eine ganzzahlige Zahl von 1 bis n und B muss sie erraten. Nach jedem Rateversuch sagt A ob der Rateversuch zu hoch oder zu niedrig ist. Wenn B die Zahl errät dann endet das Spiel. Wenn er sie nicht errät, dann darf A die Zahl ändern, aber die neue Nummer muss mit den Informationen übereinstimmen die sie bereits B gegeben hat. Nach dem Spiel, zahlt B 1€ an A für jeden Rateversuch, den er gemacht hat. |
Es geht nun um den fairen Preis V des Spiels den A zahlen muss, um dass Spiel spielen zu dürfen.
Angenommen n=4, wie ermittle ich den Wert V=2*(11/80)?
|
|
|
|
> A denkt an eine ganzzahlige Zahl von 1 bis n und B muss sie
> erraten. Nach jedem Rateversuch sagt A ob der Rateversuch
> zu hoch oder zu niedrig ist. Wenn B die Zahl errät dann
> endet das Spiel. Wenn er sie nicht errät, dann darf A die
> Zahl ändern, aber die neue Nummer muss mit den
> Informationen übereinstimmen die sie bereits B gegeben
> hat. Nach dem Spiel, zahlt B 1€ an A für jeden
> Rateversuch, den er gemacht hat.
> Es geht nun um den fairen Preis V des Spiels den A zahlen
> muss, um dass Spiel spielen zu dürfen.
>
> Angenommen n=4, wie ermittle ich den Wert V=2*(11/80)?
Hallo Tsetsefliege,
wenn ich in der Rolle von B wäre, könnte ich entweder
jeweils unter den noch zur Verfügung stehenden Zahlen
blindlings raten (etwa ausgehend von einer Gleichverteilung)
oder aber mir eine Spielstrategie ausdenken. Diese sollte,
um meine Chancen zu optimieren, darin bestehen, jeweils
eine dem Median der noch verfügbaren Zahlen nächststehende
Zahl zu raten. Für große n kann man dabei mit ca. lb(n)
Rateversuchen auskommen (lb = Binärlogarithmus).
Jetzt stellt sich für die vorliegende Aufgabe die Frage,
ob man für die Berechnung eines "fairen Preises" von
einem blindlings ratenden oder von einem strategisch
ausgewieften Spieler B (der nach seiner optimalen Strategie
spielt) ausgehen soll.
Nebenbei würde mich noch interessieren, in welcher
Quelle ich etwas über das originale Ratespiel von Ed Gilbert
nachlesen könnte. Bei der Suche bin ich zwar auf einen
Artikel in der neuesten Ausgabe des American Mathematical
Monthly gestoßen, der aber nur gegen (nicht ganz wenig)
Geld erhältlich ist.
LG Al-Chwarizmi
|
|
|
|