Eigenbasis von Eigenraum < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:08 Mo 06.05.2013 | Autor: | Harantel |
Hallo,
ich studiere Elektrotechnik und arbeite z.Z. an einer Seminararbeit über Erkennung von kohärenten Generatorgruppen in elektrischen Energieversorgungsnetzen. Bei der Analyse von Systemmatrizen bin ich dabei auf ein Problem gestoßen. Es geht dabei um die Eigenbasis von Eigenräumen.
Das was ich bis jetzt (hoffentlich) verstanden habe:
Habe ich die n Eigenwerte [mm] \lambda_{1} [/mm] bis [mm] \lambda_{n} [/mm] einer Matrix, welche sämtlich verschieden sind, und einen Eigenraum [mm] \sigma =\{\lambda_{1}...\lambda_{r}\}, [/mm] wobei r < n ist, bilden die zugehörigen Eigenvektoren [mm] \nu_{1} [/mm] bis [mm] \nu_{r} [/mm] eine Eigenbasis zu [mm] \sigma.
[/mm]
Mein Problem:
Wie erhalten ich nun eine Basis zu einem Eigenraum [mm] \sigma_{a} [/mm] = [mm] \{ \pm \wurzel{ \lambda_{1}}, \pm \wurzel{ \lambda_{2}},..., \pm \wurzel{ \lambda_{r}}\}? [/mm] Ist die Basis zu [mm] \sigma [/mm] auch eine Basis zu [mm] \sigma_{a}?
[/mm]
Ich hoffe ihr könnt mir weiterhelfen.
Gruß, Harantel
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:20 Mo 06.05.2013 | Autor: | fred97 |
> Hallo,
> ich studiere Elektrotechnik und arbeite z.Z. an einer
> Seminararbeit über Erkennung von kohärenten
> Generatorgruppen in elektrischen Energieversorgungsnetzen.
> Bei der Analyse von Systemmatrizen bin ich dabei auf ein
> Problem gestoßen. Es geht dabei um die Eigenbasis von
> Eigenräumen.
> Das was ich bis jetzt (hoffentlich) verstanden habe:
> Habe ich die n Eigenwerte [mm]\lambda_{1}[/mm] bis [mm]\lambda_{n}[/mm]
> einer Matrix, welche sämtlich verschieden sind, und einen
> Eigenraum [mm]\sigma =\{\lambda_{1}...\lambda_{r}\},[/mm] wobei r <
> n ist,
[mm] \sigma [/mm] ist eine Menge von Eigenwerten. Sowas nennt man nicht Eigenraum !
> bilden die zugehörigen Eigenvektoren [mm]\nu_{1}[/mm] bis
> [mm]\nu_{r}[/mm] eine Eigenbasis zu [mm]\sigma.[/mm]
Wenn Ihr E -Techniker das so nennt ?
> Mein Problem:
> Wie erhalten ich nun eine Basis zu einem Eigenraum
> [mm]\sigma_{a}[/mm] = [mm]\{ \pm \wurzel{ \lambda_{1}}, \pm \wurzel{ \lambda_{2}},..., \pm \wurzel{ \lambda_{r}}\}?[/mm]
> Ist die Basis zu [mm]\sigma[/mm] auch eine Basis zu [mm]\sigma_{a}?[/mm]
Diese Wurzeln werden i.a. keine Eigenwerte der ursprünglichen Matrix sein !
FRED
> Ich hoffe ihr könnt mir weiterhelfen.
> Gruß, Harantel
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
|
|
|
|
|
Hallo Fred,
danke für die schnelle Antwort. Die Begriffe entstammen einem englischen Paper/Buch. Eventuell habe ich das falsch übersetzt. Vielleicht ist das englische besser verständlich. Darin heisst es "... Letting V be an (n x r) basis matrix of the [mm] \sigma_{a} [/mm] - eigenspace...".
Diese basis-matrix V ist ja den Dimensionen nach zu urteilen eine Matrix der Basisvektoren des [mm] \sigma_{a} [/mm] - Eigenraumes. Ob das so wirklich stimmt, weiss ich leider nicht genau.
Laut dem Paper ist ein Eigenwert gleich 0, die restlichen Eigenwerte sind negative, reelle Zahlen. Für die Wurzeln ergeben sich damit, wenn ich das richtig sehe, rein imanginäre, konjugiert komplexe Zahlen.
Für mich ist im Endeffekt entscheidend, wie ich auf die basis-matrix V komme. Vielleicht kannst du, oder jemand anderes, mir dabei weiterhelfen.
Vielen Dank, Harantel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Mi 08.05.2013 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|