www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Eigentlich einfacheAbleitung
Eigentlich einfacheAbleitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigentlich einfacheAbleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:16 Mo 15.01.2007
Autor: Kristien

Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man die Ableitung von:
1) f(x)=  [mm] \bruch{3x^2-x^2}{2x^2} [/mm]
Es müsste hierbei: f '(x)=  [mm] \bruch{1}{2yx^2} [/mm] herauskommen. Aber warum? Ich habe hier einfach die Quotientenregel verwendet es kommt aber nicht heraus!
2) f(x)= [mm] \bruch{1-x^2}{x} [/mm]
Es müsste herauskommen: f '(X)= [mm] \bruch{-1}{x^2}-1 [/mm]
Ich bekomme aber wieder mit der Quotientenregel: 1 heraus [mm] also\bruch{x^2}{x^2} [/mm]
3) f(x)= [mm] \bruch{(x+1)^0,5}{(x-1)^0,5} [/mm]
Hierbei müsste f '(x)= - [mm] \bruch{1}{(x^2 -1)^0,5 *(x-1)} [/mm]

Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
Dankeschö.

        
Bezug
Eigentlich einfacheAbleitung: Tipps
Status: (Antwort) fertig Status 
Datum: 09:00 Mo 15.01.2007
Autor: informix

Hallo Kristien,

> Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> die Ableitung von:
>  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]

bitte überprüfe diesen Term, er ist so unsinnig!

>  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

wo kommt das y her?!

> Aber warum? Ich habe hier einfach die Quotientenregel
> verwendet es kommt aber nicht heraus!

zeig uns bitte deine Rechnung, sonst können wir ja nicht wissen, was du rechnest.

>  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]
>  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  Ich bekomme aber wieder mit der Quotientenregel: 1 heraus
> [mm]also\bruch{x^2}{x^2}[/mm]

nimm statt der (komplizierteren) Quotientenregel doch einfach: [mm] f(x)=\frac{1}{x}-x [/mm] als Term...

>  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]
> Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>

schaun 'mer mal:
[mm] u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5} [/mm]
[mm] v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5} [/mm]

und jetzt die MBQuotientenregel: [mm] f'(x)=\frac{u'v-v'u}{v^2} [/mm]

[mm] f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{((x-1)^{0,5})^2} [/mm]

[verbessert: informix]

Doppelbruch auflösen, zusammenfassen, dritte binomische Formel beachten!

> Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  Dankeschö.


Gruß informix

Bezug
                
Bezug
Eigentlich einfacheAbleitung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:14 Mo 15.01.2007
Autor: Kristien


> Hallo Kristien,
>  
> > Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> > die Ableitung von:
>  >  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]
>  bitte überprüfe diesen Term, er ist so unsinnig!
>  
> >  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

> wo kommt das y her?!
>  
> > Aber warum? Ich habe hier einfach die Quotientenregel
> > verwendet es kommt aber nicht heraus!
>  zeig uns bitte deine Rechnung, sonst können wir ja nicht
> wissen, was du rechnest.
>  
> >  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]

>  >  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  >  Ich bekomme aber wieder mit der Quotientenregel: 1
> heraus
> > [mm]also\bruch{x^2}{x^2}[/mm]
>  nimm statt der (komplizierteren) Quotientenregel doch
> einfach: [mm]f(x)=\frac{1}{x}-x[/mm] als Term...
>  
> >  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

> > Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>  
> >
> schaun 'mer mal:
>  [mm]u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5}[/mm]
>  
> [mm]v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5}[/mm]
>  
> und jetzt die MBQuotientenregel:
> [mm]f'(x)=\frac{u'v-v'u}{v^2}[/mm]
>  
> [mm]f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

  
Hi informix, müsste unter dem Bruchstrich jetzt nicht einfach: x-1 stehen, da es vorher ja wurzel aus x-1 war und [mm] v^2 [/mm] gerechnet werden muss?! Danke für Nr. 2 , ging echt einfacher! Bei Nr. 1 es stimmt, der Bruch ist echt schwachsinnig, da ja 1 herauskommt! Steht aber tatsächlich so im Buch!

> Doppelbruch auflösen, zusammenfassen, dritte binomische
> Formel beachten!
>  
> > Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  >  Dankeschö.
>
>
> Gruß informix

Bezug
                        
Bezug
Eigentlich einfacheAbleitung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:20 Mo 15.01.2007
Autor: informix

Hallo Kristien,

> > Hallo Kristien,
>  >  
> > > Hallo, könntet ihr mir vielleicht helfen? Wie berechnet man
> > > die Ableitung von:
>  >  >  1) f(x)=  [mm]\bruch{3x^2-x^2}{2x^2}[/mm]
>  >  bitte überprüfe diesen Term, er ist so unsinnig!
>  >  
> > >  Es müsste hierbei: f '(x)=  [mm]\bruch{1}{2yx^2}[/mm] herauskommen.

> > wo kommt das y her?!
>  >  
> > > Aber warum? Ich habe hier einfach die Quotientenregel
> > > verwendet es kommt aber nicht heraus!
>  >  zeig uns bitte deine Rechnung, sonst können wir ja
> nicht
> > wissen, was du rechnest.
>  >  
> > >  2) f(x)= [mm]\bruch{1-x^2}{x}[/mm]

>  >  >  Es müsste herauskommen: f '(X)= [mm]\bruch{-1}{x^2}-1[/mm]
>  >  >  Ich bekomme aber wieder mit der Quotientenregel: 1
> > heraus
> > > [mm]also\bruch{x^2}{x^2}[/mm]
>  >  nimm statt der (komplizierteren) Quotientenregel doch
> > einfach: [mm]f(x)=\frac{1}{x}-x[/mm] als Term...
>  >  
> > >  3) f(x)= [mm]\bruch{(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]

> > > Hierbei müsste f '(x)= - [mm]\bruch{1}{(x^2 -1)^{0,5} *(x-1)}[/mm]
>  
> >  

> > >
> > schaun 'mer mal:
>  >  [mm]u(x)=(x+1)^{0,5} u'(x)=\frac{1}{2}(x+1)^{-0,5}[/mm]
>  >  
> > [mm]v(x)=(x-1)^{0,5} v'(x)=\frac{1}{2}(x-1)^{-0,5}[/mm]
>  >  
> > und jetzt die MBQuotientenregel:
> > [mm]f'(x)=\frac{u'v-v'u}{v^2}[/mm]
>  >  
> >
> [mm]f'(x)=\frac{\frac{1}{2}(x+1)^{-0,5}*(x-1)^{0,5}-\frac{1}{2}(x-1)^{-0,5}*(x+1)^{0,5}}{(x-1)^{0,5}}[/mm]
>    
> Hi informix, müsste unter dem Bruchstrich jetzt nicht
> einfach: x-1 stehen, da es vorher ja wurzel aus x-1 war und
> [mm]v^2[/mm] gerechnet werden muss?!

[sorry] hast natürlich recht - ich hab's verbessert.

> Danke für Nr. 2 , ging echt
> einfacher! Bei Nr. 1 es stimmt, der Bruch ist echt
> schwachsinnig, da ja 1 herauskommt! Steht aber tatsächlich
> so im Buch!
>
> > Doppelbruch auflösen, zusammenfassen, dritte binomische
> > Formel beachten!
>  >  
> > > Kann mir bitte jemand sagen, wie ich das ausrechnen kann?
>  >  >  Dankeschö.
> >
> >
> > Gruß informix  


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]