www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Eigenvektoren
Eigenvektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:22 Di 20.06.2006
Autor: ANjaan

Aufgabe
Gegeben A = a b ∈ R2x2.
                     c d
Berechnen Sie allgemein die Eigenwerte und möglichen Eigenvektoren von A, sowie speziell für a=d=1 und b=c=2.
4.2 Gegeben A= (cos(α) -sin(α))
                          (sin(α) cos(α))
Zeigen Sie: A hat keine reellen Eigenwerte.
Berechnen Sie die Eigenwerte und Eigenräume von A über den komplexen Zahlen.

Grundidee wie man das rechnet??


danke

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 20.06.2006
Autor: choosy

Also merkwuerdig wieviele tutanten man hier trifft... einfacher waere die frage bei studIP im forum....da haetten auch die anderen was von.

allgemein ist

$det [mm] \pmat{ a & b \\ c & d } [/mm] = ad-bc$
fuer die eigenwerte  musst du

$det [mm] \pmat{ a-\lambda & b \\ c & d-\lambda } [/mm] = 0$
ausrechnen.

wann die eigenwerte reell sind siehst du dann....dann kannst du vielleicht auch mit meinem eintrag bei stud-ip mehr anfangen

gruss
dein tutor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]