Eigenwerte < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die Eigenwerte der Matrix [mm] A=\pmat{ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5} [/mm] ohne das charakteristische Polynom zu bestimmen. |
Hallo zusammen!
Das Ergebnis der Aufgabe kenne ich schon, aber kann es leider nicht so ganz nachvollziehen...Die Argumentation unserer Lösung ist:
1) Da der Rang(A)=1, ist 0 Eigenwert von A mit geometrischer Vielfachheit 2. Mir ist da leider der Gedankengang nicht so ganz klar, wie man von dem Rang darauf schließen kann, dass 0 EW ist.
[mm] 2)A\vektor{1 \\ 1 \\ 1}=\vektor{15 \\ 15 \\ 15}. [/mm] Daraus folgt, dass 15 Eigenwert von A ist. Aber warum?
3)Da die geometrische Vielfachheit von dem Eigenwert 0 zwei ist, sind 0 und 15 alle EW. Ist mir leider auch nicht so ganz klar, warum man aus der geometrischen Vielfachheit die Anzahl der Eigenwerte schließen kann.
Viele Grüße
Noki
(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:29 Mi 01.10.2008 | Autor: | fred97 |
> Bestimmen Sie die Eigenwerte der Matrix [mm]A=\pmat{ 5 & 5 & 5 \\ 5 & 5 & 5 \\ 5 & 5 & 5}[/mm]
> ohne das charakteristische Polynom zu bestimmen.
> Hallo zusammen!
>
> Das Ergebnis der Aufgabe kenne ich schon, aber kann es
> leider nicht so ganz nachvollziehen...Die Argumentation
> unserer Lösung ist:
>
> 1) Da der Rang(A)=1, ist 0 Eigenwert von A mit
> geometrischer Vielfachheit 2. Mir ist da leider der
> Gedankengang nicht so ganz klar, wie man von dem Rang
> darauf schließen kann, dass 0 EW ist.
Nennen wir f die durch A vermittelte lineare Abbildung, also f(x) = Ax
Dann gilt (das hattet Ihr sicher): 3 = dim [mm] \IR^3 [/mm] = dim kernf + dimBild(f). Da dimBild(f) = Ranga = 1, ist dimkernf = 2 [mm] \ge [/mm] 0. Somit gibt es ein x [mm] \not=0 [/mm] mit f(x) = 0, also Ax =0
>
> [mm]2)A\vektor{1 \\ 1 \\ 1}=\vektor{15 \\ 15 \\ 15}.[/mm] Daraus
> folgt, dass 15 Eigenwert von A ist. Aber warum?
[mm] A\vektor{1 \\ 1 \\ 1}=\vektor{15 \\ 15 \\ 15} [/mm] = [mm] 15\vektor{1 \\ 1 \\ 1}
[/mm]
>
> 3)Da die geometrische Vielfachheit von dem Eigenwert 0 zwei
> ist, sind 0 und 15 alle EW. Ist mir leider auch nicht so
> ganz klar, warum man aus der geometrischen Vielfachheit die
> Anzahl der Eigenwerte schließen kann.
Kann die summe der geom. Vielfachheiten > 3 sein ?? Nein !! (ist Dir klar warum ?)
die geom. Vielfachheit des eigenwerts 0 ist 2
die geom. Vielfachheit des eigenwerts 15 ist mindestens 1. Somit haben wir die 3 schon erreicht.
FRED
>
> Viele Grüße
> Noki
>
> (Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.)
|
|
|
|