www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte & Eigenvektoren
Eigenwerte & Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte & Eigenvektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:48 Sa 01.07.2006
Autor: Wuschelblubb

Aufgabe
(5.1) Welche Eigenwerte und Eigenvektoren ergeben sich für die Gleichung A * [mm] \vec{x} [/mm] =  [mm] \lambda [/mm] * [mm] \vec{a} [/mm] mit A = [mm] \pmat{ 1 & 1 \\ 0 & 1 }. [/mm] Wie ist dieses Ergebniss zu interpretieren?

(5.2) Bestimmen Sie die Eigenwerte und die Eigenvektoren der linearen Abbildung P =  [mm] \pmat{ 7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5 } [/mm]

Morgen erstmal!

Habe hier nochmal eine Aufgabe, bei der ich Probleme habe.

Bei der Aufgabe (5.1) stehe ich komplett auf dem Schlauch, da wäre ich sehr dankbar, für eine Lösung mit einer Erklärung.


zu (5.2) Hier habe ich die Eigenwerte [mm] \lambda [/mm] 1,2,3 =  3, 6, 9 errechnet.

Nun gehe ich an die Eigenvektoren nach der Formal: ( P - [mm] \lambda [/mm] * E) *  [mm] \vec{x} [/mm] =  [mm] \vec{0} [/mm]

Durch das Einsetzen meiner 3 [mm] \lambda [/mm] Werte (also die ausgerechneten Eigenwerte) müsste ich doch 3 LGS bekommen, die ich nach  [mm] x_{1}, x_{2}, x_{3} [/mm] auflösen müsste, wodurch ich meine 3 Eigenvektoren bekommen sollte oder?

Und genau hier ist mein Problem: Ich erhalte nach einsetzen und unformen jedesmal ein LGS, das ich nicht eindeutig lösen kann.

Sind meine Eigenwerte falsch (glaube ich allerdings nicht, da ich mehrfach nachgerechnet habe)? Oder liegt mein Fehler beim lösen der 3 LGS (denke ich eher)?



Wie immer auch hier erstmal Danke im vorraus an alle, die sich extra die zeit nehmen, um Hilfestellungen zu geben.

Grüße und noch nen schönes Wochenende!

        
Bezug
Eigenwerte & Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 08:07 Mo 03.07.2006
Autor: mathiash

Hallo und guten Morgen,

erst mal ein Kompliment zu Deinem aussagekräftigen Alias.

Schreib doch mal das  GLS explizit hin:

[mm] \pmat{ 1 & 1 \\ 0 & 1}\cdot \vektor{x & y} [/mm] = [mm] \vektor{\lambda\cdot x & \lambda \cdot y} [/mm]

Die linke Seite ist gleich [mm] \vektor{x+y & y} [/mm] ,

also muss [mm] \lambda [/mm] gleich 1 sein, nicht wahr ?

Schaffst Du die erste Aufgabe jetzt ?

Viel Erfolg,

Mathias

Bezug
        
Bezug
Eigenwerte & Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:43 Di 04.07.2006
Autor: Susi___

Hallo Wuschelblubb.
Das ist schon richtig, dass du die LGS nicht eindeutig lösen kannst. Eigenvektoren sind keine Punkte sondern mindestens eindimensionale Unterräume. Da du drei Eigenwerte hast in einem dreidimensionalen Vektorraum, sind alle deine Eigenvektoren eindimensional. (Ich gehe mal davon aus, dass ihr in der Schule noch nicht im R hoch n rechnet sonst stimmt das natürlich nicht.)
d.h. eine Vielfache eines Eigenvektors zu einem Eigenwert ist wieder Eigenvektor zu diesem Eigenwert.

Bezug
        
Bezug
Eigenwerte & Eigenvektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 So 09.07.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]