www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Eigenwerte Hessematrix
Eigenwerte Hessematrix < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte Hessematrix: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:16 So 22.05.2005
Autor: Steffi2004

Hallo allerseits!

Ich sitze gerade an einer Aufgabe bei der ich für [mm] n\ge [/mm] 2 zeigen soll, dass die Hessematrix von [mm] f(x)=\parallel x\parallel [/mm] für [mm] x\in R^n \backslash\{0\} [/mm] die Eigenwerte 0 und [mm] 1/\parallel [/mm] x [mm] \parallel [/mm] hat.
Als Erinnerung steht noch dabei, dass die Hessmatrix von [mm] \parallel x\parallel [/mm] durch f''(x)ij = [mm] 1/\parallel [/mm] x [mm] \parallel *(\delta [/mm] ij - [mm] (xi+xj)/(\parallel x\parallel [/mm] ^2)) gegeben ist (Die i und j sind Indices, wusste aber nicht wie ich das richtig formatieren kann, sorry). Als Schema soll ich die Hessematrix zunächst auf einen beliebigen Vektor y anwenden, dann für besonders einfach Fälle das Ergebnis bestimmen und damit dann geeignete Eigenvektoren finden.
Meine erste Frage, stimmt es, dass [mm] \deltaij [/mm] immer 1 ist wenn i=j und sonst 0?Außerdem scheitere ich leider schon damit, die Hessematrix auf den beliebigen Vektor y anzuwenden, ich weiß irgendwie nicht was ich da tun soll. Leider muss ich die Lösung der Aufgabe schon am Dienstag abgeen, deshalb das Fälligkeitsdatum.
Wäre schön wenn mir jemand helfen könnte...
Danke schonmal!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte Hessematrix: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:39 Di 24.05.2005
Autor: MathePower

Hallo Steffi,

> Ich sitze gerade an einer Aufgabe bei der ich für [mm]n\ge[/mm] 2
> zeigen soll, dass die Hessematrix von [mm]f(x)=\parallel x\parallel[/mm]
> für [mm]x\in R^n \backslash\{0\}[/mm] die Eigenwerte 0 und
> [mm]1/\parallel[/mm] x [mm]\parallel[/mm] hat.
>  Als Erinnerung steht noch dabei, dass die Hessmatrix von
> [mm]\parallel x\parallel[/mm] durch f''(x)ij = [mm]1/\parallel[/mm] x
> [mm]\parallel *(\delta[/mm] ij - [mm](xi+xj)/(\parallel x\parallel[/mm] ^2))
> gegeben ist (Die i und j sind Indices, wusste aber nicht
> wie ich das richtig formatieren kann, sorry). Als Schema

So vielleicht:

[mm]\frac{{\partial ^2 f(x)}} {{\partial x_i \partial x_j }}\; = \;\frac{1} {{\left\| x \right\|}}\;\left( {\delta _{ij} - \;\frac{{x_i \;x_j }} {{\left\| x \right\|^2 }}} \right)[/mm]

> soll ich die Hessematrix zunächst auf einen beliebigen
> Vektor y anwenden, dann für besonders einfach Fälle das
> Ergebnis bestimmen und damit dann geeignete Eigenvektoren
> finden.

>  Meine erste Frage, stimmt es, dass [mm]\deltaij[/mm] immer 1 ist
> wenn i=j und sonst 0?Außerdem scheitere ich leider schon

Ja, das stimmt.

[mm]\delta _{ij} \; = \;\left\{ {\begin{array}{*{20}c} 0 & {falls\;i\; \ne \;j} \\ 1 & {falls\;i\; = \;j} \\ \end{array} } \right[/mm]

> damit, die Hessematrix auf den beliebigen Vektor y
> anzuwenden, ich weiß irgendwie nicht was ich da tun soll.

Ersetze einfach das x durch ein y bzw. die [mm]x_{i}[/mm] durch [mm]y_{i}[/mm].

Ein einfacher Fall ergibt sich für n=2:

[mm]\left( {\begin{array}{*{20}c} {\frac{{x_{2}^{2} }} {{\left\| x \right\|^{3} }}} & {\frac{{ - x_{1} \;x_{2} }} {{\left\| x \right\|^{3} }}} \\ {\frac{{ - x_{1} \;x_{2} }} {{\left\| x \right\|^{3} }}} & {\frac{{x_{1}^{2} }} {{\left\| x \right\|^{3} }}} \\ \end{array} } \right)[/mm]

Hier kannst Du die Eigenwerte relativ einfach bestimmen.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]