Eigenwerte darstellende Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:07 Di 28.01.2014 | Autor: | onkelfreddy |
Hallo!
Ich hätte da ein paar Verständnisfragen:
wenn ich die Basen (zB [mm] \overrightarrow{v1} [/mm] , [mm] \overrightarrow{v2} [/mm] ...) eines Vektorraums L gegben habe, sowie deren Bilder (zB [mm] \overrightarrow{b1} [/mm] , [mm] \overrightarrow{b2} [/mm] ....)und möchte nun die dazugehörige darstellende Matrix bestimmen, dann rechne ich normalerweise:
[mm] L_{B1}*Einheitsvektor [/mm] = [mm] (K_{B1}(L(K^{-1}_{B1})))*Einheitsvektor
[/mm]
Nun wurde mir gesagt, dass ich auch einfach herausfinden kann, welches Vielfache eines der Basisvektoren= [mm] \overrightarrow{b1} [/mm] ist und je nachdem welcher es war und mit welchem Faktor k, weiß ich danach die jeweilige Spalte der darstellenden Matrix.
Wieso ist dem so?
Und dann noch eine Frage zu Eigenwerten w:
w* [mm] \overrightarrow{v1} [/mm] = [mm] \overrightarrow{b1} [/mm]
D.h. wenn ich meinen Eigenwert w bestimmen möchte und die Basis sowie das Bild der Basis gegeben habe, wieso kann ich einfach sagen, dass w= dem Faktor ist, mit dem ich die Basis multiplizieren muss, um das Bild der Basis heraus zu bekommen?
Vielen Dank!
|
|
|
|
Hallo,
wenn wir Dir richtig helfen sollen - und nicht noch mehr Verwirrung stiften -, wäre es gut, wenn Du mal eine konkrete Aufgabe posten würdest.
Am besten keine selbstausgedachte, sondern eine Dir gestellte, in deren Dunstkreis sich Deine Fragen ergeben haben.
Poste die Aufgabe,
poste Deinen Lösungsweg,
sage dann, was Dir dazu gesagt wurde bzw. wie Du das Gesagte verstanden hast.
LG Angela
|
|
|
|
|
Hallo!
Entschuldigung, für die späte Antwort....
also die Aufgabe wäre diese hier: https://matheraum.de/forum/Eigenwerte_Eigenraeume/Tipp_Korrektur/i1006854
Also gegeben ist dieser Vektorraum V der reellen rechten oberen Dreiecksmatrix $ [mm] V=\left\{\pmat{ a_{1} & a_{2} \\ 0 & a_{3} } \in \IR^{2x2} | a_{1}, a_{2}, a_{3} \in \IR\right\}, [/mm]
sowie die lineare Abbildung L: V -> V und die Bilder von L:
$ [mm] L(\pmat{ 0 & -1 \\ 0 & 0 })=\pmat{ 0 & 3 \\ 0 & 0 }, L(\pmat{ 1 & 2 \\ 0 & -3 })=\pmat{ 2 & 4 \\ 0 & -6 }, L(\pmat{ 1 & 0 \\ 0 & 0})=\pmat{ 0 & -6 \\ 0 & 0}. [/mm] $
Nun, die Eigenwerte sind -3, 2 und 0, was ja letztendlich die Faktoren sind, mit denen ich die Basiselemente multiplizieren musste, um die jeweiligen Bilder heraus zu bekommen.
Das wäre also meine zweite Frage gewesen, warum das so ist?!
Und dann zu meiner ersten Frage:
[mm] \pmat{ 1 & 2 \\ 0 & -3 } [/mm] , [mm] \pmat{ 1 & 0 \\ 0 & 0 } [/mm] und [mm] \pmat{ 0 & -1 \\ 0 & 0 } [/mm] bilden nun auch die Basis bzgl. L und ich möchte nun die darstellende Matrix LB dazu bestimmen.
Wie geschrieben, wurde mir gesagt, dass ich dazu herausfinden muss, welches Vielfache eines der Basisvektoren= $ [mm] \overrightarrow{b1} [/mm] $ ist und je nachdem welcher es war und mit welchem Faktor k, weiß ich danach die jeweilige Spalte der darstellenden Matrix.
Also sprich:
$ = [mm] \pmat{ 2 & 4 \\ 0 & -6 } [/mm] habe ich 2mal mit dem ersten Basiselement malgenommen -> die erste Spalte meiner darstellenden Matrix lautet 2* 1.Einheitsvektor
Analog zu zur 2. Spalte gilt, [mm] \pmat{ 0 & -6 \\ 0 & 0 } [/mm] habe ich 6mal mit dem dritten Basiselemt malgenommen -> die zweite Spalte von LB lautet 6* 3.Einheitsvektor
Schlussendlich lautet meine LB nun: [mm] \pmat{ 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 6 &-3}
[/mm]
Und nun frage ich mich, warum dem so ist? Und ob das bei jeder Matrix gilt oder nur bei oberen Dreiecksmatrizen?
Vielen Dank!
Viele Grüße
|
|
|
|
|
> Hallo!
>
> Entschuldigung, für die späte Antwort....
> also die Aufgabe wäre diese hier:
> https://matheraum.de/forum/Eigenwerte_Eigenraeume/Tipp_Korrektur/i1006854
Hallo,
>
> Also gegeben ist dieser Vektorraum V der reellen rechten
> oberen Dreiecksmatrix $ [mm]V=\left\{\pmat{ a_{1} & a_{2} \\ 0 & a_{3} } \in \IR^{2x2} | a_{1}, a_{2}, a_{3} \in \IR\right\},[/mm]
V hat die Dimension 3.
>
> sowie die lineare Abbildung L: V -> V und die Bilder von
> L:
>
> [mm]L(\pmat{ 0 & -1 \\ 0 & 0 })=\pmat{ 0 & 3 \\ 0 & 0 }, L(\pmat{ 1 & 2 \\ 0 & -3 })=\pmat{ 2 & 4 \\ 0 & -6 }, L(\pmat{ 1 & 0 \\ 0 & 0})=\pmat{ 0 & -6 \\ 0 & 0}.[/mm]
>
>
> Nun, die Eigenwerte sind -3, 2 und 0,
Daß -3 und 2 Eigenwerte sind, sieht man sofort, denn es ist
[mm] L(\pmat{ 0 & -1 \\ 0 & 0 })=\pmat{ 0 & 3 \\ 0 & 0 }=-3*\pmat{ 0 & -1 \\ 0 & 0 },
[/mm]
[mm] L(\pmat{ 1 & 2 \\ 0 & -3 })=\pmat{ 2 & 4 \\ 0 & -6 }=2*\pmat{ 1 & 2 \\ 0 & -3 }.
[/mm]
Für den Eigenwert 0 muß man ein wenig überlegen:
Die Dimension des Bildraumes ist offenbar 2, also ist dim Kern(L)=1.
Also gibt es einen Vektor (hier= eine obere Dreiecksmatrix), welche auf den Nulvektor (hier: Nullmatrix) abgebildet wird.
> Und dann zu meiner ersten Frage:
>
> [mm]\pmat{ 1 & 2 \\ 0 & -3 }[/mm] , [mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm] und
> [mm]\pmat{ 0 & -1 \\ 0 & 0 }[/mm] bilden nun auch die Basis bzgl. L
> und ich möchte nun die darstellende Matrix [mm] L_B [/mm] dazu
> bestimmen.
Du mußt die Bilder der Basisvektoren von B bestimmen und als Koordinatenvektor bzgl B schreiben.
Das sind die Spalten der Darstellungsmatrix von L bzgl B.
> Also sprich:
>
> $ = [mm]\pmat{ 2 & 4 \\ 0 & -6 }[/mm] habe ich 2mal mit dem ersten
> Basiselement malgenommen -> die erste Spalte meiner
> darstellenden Matrix lautet 2* 1.Einheitsvektor
Genau.
[mm] L(\pmat{ 1 & 2 \\ 0 & -3 })=\pmat{ 2 & 4 \\ 0 & -6 }=2*[/mm] [mm]\pmat{ 1 & 2 \\ 0 & -3 }[/mm]+0*[mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm]+0* [mm]\pmat{ 0 & -1 \\ 0 & 0 }[/mm] [mm] =\vektor{2\\0\\0}_{(B]}
[/mm]
>
> Analog zu zur 2. Spalte gilt, [mm]\pmat{ 0 & -6 \\ 0 & 0 }[/mm] habe
> ich 6mal mit dem dritten Basiselemt malgenommen -> die
> zweite Spalte von LB lautet 6* 3.Einheitsvektor
[mm] L(\pmat{ 1 & 0 \\ 0 & 0})=\pmat{ 0 & -6 \\ 0 & 0}=0*[/mm] [mm]\pmat{ 1 & 2 \\ 0 & -3 }[/mm]+0*[mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm]+6* [mm]\pmat{ 0 & -1 \\ 0 & 0 }[/mm] [mm] =\vektor{0\\0\\6}_{(B]}
[/mm]
3.Spalte:
[mm] L(\pmat{ 0 & -1 \\ 0 & 0 })=\pmat{ 0 & 3 \\ 0 & 0 }=0*[/mm] [mm]\pmat{ 1 & 2 \\ 0 & -3 }[/mm]+0*[mm]\pmat{ 1 & 0 \\ 0 & 0 }[/mm]+-3* [mm]\pmat{ 0 & -1 \\ 0 & 0 }[/mm] [mm] =\vektor{0\\0\\-3}_{(B]}
[/mm]
>
> Schlussendlich lautet meine LB nun: [mm]\pmat{ 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 6 &-3}[/mm].
>
> Und nun frage ich mich, warum dem so ist?
In den Spalten der Darstellungsmatrix bzgl einer vorgegebenen Basis stehen halt immer die Bilder der Basisvektoren bzgl dieser Basis.
> Und ob das bei
> jeder Matrix gilt oder nur bei oberen Dreiecksmatrizen?
Wenn Du eine lineare Abbildung f zwischen zwei endlichdimensionalen Vektorräumen V und W mit den Basen B und C hast, bkommst Du die Darstellungsmatix von f bzgl dieser Basen immer, indem Du die Bilder der Basisvektoren von B bestimmst und als Koordinatenvektor bzgl C schreibst. Dies sind dann die Spalten der Darstellungsmatrix.
LG Angela
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:37 So 02.02.2014 | Autor: | BenneX |
Hallo Angela,
ich kämpfe im Moment mit der selben Aufgabe und bin schon fast fertig.
Mein Problem ist jetzt noch: Als charakteristisches Polynom habe ich (2-z)*(6+2z) rauß. Aus diesem ergeben sich ja offensichtlich die Eigenwerte -3 und 2, da diese die Nullstellen des char. Polynoms sind. Wie komme ich jedoch auf den Eigenwert 0?
Und bei der letzten Frage bräuchte ich auch noch Hilfe, ist L eine injektive, surjektive oder bijektive Abbildung? Die Bedeutung jeweils verstehe ich, doch wie wende ich es hier an? Bei Matrizen ist mir dies neu.
Vielen Danke so weit für deine Hilfe schon mal!
Grüße, BenneX.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:29 So 02.02.2014 | Autor: | leduart |
Hallo
welche Dim hat denn das Bild von L? daran allein kannst du fast alles ablesen.
char . Polynom von was?bzw wie bist du darauf gekommen? wo ist der dritte Faktor geblieben?
Gruß leduart
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:59 So 02.02.2014 | Autor: | BenneX |
Hallo, danke für deine Reaktion. Ich hatte zu schnell geschrieben und ein z mir einer 2 verwechselt. Jetzt konnte ich auch den Eigenwert 0 berechnen. Grüße Benny
|
|
|
|