www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte mit Störung
Eigenwerte mit Störung < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte mit Störung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 Fr 27.04.2012
Autor: Skorpinus

Aufgabe
Es sei $A$ eine Matrix mit Eigenwerten mit negativen Realteilen. Betrachte die gestörte Matrix $A+O(e)$. Zeige, für kleine $e [mm] \in \mathbb{R}$ [/mm] hat die gestörte Matrix auch nur negative Realteile.


Hallo zusammen,

obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner Diplomarbeit über Dynamische Systeme. Ich habe eine Taylorentwicklung nach einem Parameter e (reelle Zahl), die nach Umformungen folgende Form ergibt
$Id+ [mm] \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))$ [/mm]
Die Beträge der Eigenwerte dieses Terms müssen kleiner 1 sein, also müssen die Eigenwerte [mm] $D_\epsilon D_x P(\xi_0,0)+O(\epsilon)$ [/mm] negative Realteile haben. Ich hoffe, dass negative Realteile von den Eigenwerten von [mm] $D_\epsilon D_x P(\xi_0,0)$ [/mm] ausreichen, solange e nicht zu groß wird, konnte aber bisher keinen Beweis dazu finden.

Leider kenne ich mich in dieser Thematik nicht so genau aus. Zu dem Themenbereich habe ich bisher nur in Büchern der Numerik etwas gefunden, das mir aber bisher nicht weitergeholfen hat. Jede Lösung, Lösungshinweis oder Verweis, wo ich nachschauen könnte ist willkommen.

        
Bezug
Eigenwerte mit Störung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Fr 27.04.2012
Autor: rainerS

Hallo!

> Es sei [mm]A[/mm] eine Matrix mit Eigenwerten mit negativen
> Realteilen. Betrachte die gestörte Matrix [mm]A+O(e)[/mm]. Zeige,
> für kleine [mm]e \in \mathbb{R}[/mm] hat die gestörte Matrix auch
> nur negative Realteile.
>  
> Hallo zusammen,
>  
> obrige Aufgaben bzw. Frage ergibt sich im Rahmen meiner
> Diplomarbeit über Dynamische Systeme. Ich habe eine
> Taylorentwicklung nach einem Parameter e (reelle Zahl), die
> nach Umformungen folgende Form ergibt
>  [mm]Id+ \epsilon\cdot (D_\epsilon D_x P(\xi_0,0)+O(\epsilon))[/mm]
>  
> Die Beträge der Eigenwerte dieses Terms müssen kleiner 1
> sein, also müssen die Eigenwerte [mm]D_\epsilon D_x P(\xi_0,0)+O(\epsilon)[/mm]
> negative Realteile haben. Ich hoffe, dass negative
> Realteile von den Eigenwerten von [mm]D_\epsilon D_x P(\xi_0,0)[/mm]
> ausreichen, solange e nicht zu groß wird, konnte aber
> bisher keinen Beweis dazu finden.
>
> Leider kenne ich mich in dieser Thematik nicht so genau
> aus. Zu dem Themenbereich habe ich bisher nur in Büchern
> der Numerik etwas gefunden, das mir aber bisher nicht
> weitergeholfen hat. Jede Lösung, Lösungshinweis oder
> Verweis, wo ich nachschauen könnte ist willkommen.

Warum haben dir die Lehrbücher der Numerik nicht weitergeholfen?

Stichwort: Satz von Bauer-Fike.

  Viele Grüße
    Rainer

Bezug
                
Bezug
Eigenwerte mit Störung: Ergänzung
Status: (Frage) überfällig Status 
Datum: 18:44 Fr 27.04.2012
Autor: Skorpinus

Oh, jetzt wo du mich darauf hinweist, sehe ich, dass er mir tatsächlich weiterhelfen würde. Ich glaube, ich habe die Aussage des Satzes nur nicht sorgfältig genug gelesen.

Aber: Der Satz von Bauer-Fike setzt eine diagonalisierbare Matrix voraus. Im Allgemeinen wird mein A aber nicht diagonalisierbar sein.

Nachtrag:
Für folgende nicht diagonalisierbare Matrix
[mm] \pmat{ 1 & 0 \\ 1 & 1 } [/mm]

und folgende gestörte Matrix

[mm] \pmat{ 1 & e \\ 1 & 1 } [/mm]

hat man eine Differenz von den Eigenwerten von [mm] $\Delta \lambda [/mm] = [mm] \sqrt{e}$. [/mm]

Das wäre für die Aufgabenstellung aber auch kein Problem, da die Differenz immer noch eine stetige Funktion ist, wenn auch nicht in 0 differenzierbar. Ich bräuchte also ein allgemeineres Resultat für Matrizen, die mir die stetige Abhängigkeit von Störungen gibt...

Bezug
                        
Bezug
Eigenwerte mit Störung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 01.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]