Eigenwerte von 4x4 Matrizen ++ < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie ,dass die folgende Matrix diagonalisierbar ist.
[mm] \pmat{ -3 & 2 &0&-2\\ -2 & -1&6&2\\-2&2&-1&-2\\2&-4&5&5 } [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Einen schönen Guten Tag allerseits!
Mir bereitet die Berechnung von Determinanten,Eigenwerten..vektoren bei 2X2 bzw 3X3 Matrizen keine Probleme(Dank den einschlägigen Regeln) ..doch wie geht man bei einer 4X4 Matrix vor ?
Natürlich gibt es das La Place Verfahren doch dann müsste man die Determinanten von 4 3X3 Matrizen berechnen ..sehr aufwändige Angelegenheit .
Wenn man die Matrix auf eine Dreiecksform bringt ,ändern sich aber so weit ich weiß die Eigenwerte (?)...Welche alternativen Möglichkeiten gibt es daher zur Berechnung der Eigenwerte / Vektoren bei einer 4X4 Matrix ? Gibt es Umformungen die man durchführen darf...bei denen sich aber nicht die Eigenwerte verändern ?? Gibt es nicht ganz so zeitaufwändig Verfahren wie das Laplace Verfahren an der Ausgangsmatrix? Es wäre super,wenn es mir jemand an dem obigen Beispiel erklären könnte // oder mir generelle Tips geben kann!
Liebe Grüße und herzlichen Dank!
Minderbemittelt
|
|
|
|
Du könntest den Gauss-Algorithmus verwenden, den man ja auch dazu nutzen kann, die Determinante zu bestimmen, indem man die Kehrwerte der Faktoren aufmultipliziert, mit den man im Laufe des Verfahrens die einzelnen Zeilen multiplizieren musste, um die Diagonalelemente auf 1 zu bringen. Der Aufwand steigt nur mit [mm]n^3[/mm] statt mit [mm]n![/mm].
|
|
|
|