Einstellige Prädikate < Prädikatenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Für die eistelligen Prädikate P,Q,R zeige man:
a) [mm] {\forall x (Rx \to (\neg Px \wedge \neg Qx)), \forall x (Px \to Qx)} [/mm] dann folgt [mm] \neg \exists [/mm] x (Rx [mm] \wedge [/mm] Qx)
b) [mm] \forall [/mm] x ((Px [mm] \vee [/mm] Qx) [mm] \to [/mm] Rx) dann folgt [mm] \neg \exists [/mm] x (Px [mm] \wedge [/mm] Qx [mm] \wedge \neg [/mm] Rx) |
Hallo, ich komme bei den beiden Aufgaben nicht weiter.
Vielleicht sieht jemand von euch einen Lösungsweg :)
gruß
Arthur
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
> Für die eistelligen Prädikate P,Q,R zeige man:
>
> a) [mm]{\forall x (Rx \to (\neg Px \wedge \neg Qx)), \forall x (Px \to Qx)}[/mm] dann folgt [mm]\neg \exists[/mm] x (Rx [mm]\wedge[/mm] Qx)
>
> b) [mm]\forall[/mm] x ((Px [mm]\vee[/mm] Qx) [mm]\to[/mm] Rx) dann folgt [mm]\neg \exists[/mm] x (Px [mm]\wedge[/mm] Qx [mm]\wedge \neg[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Rx)
> Hallo, ich komme bei den beiden Aufgaben nicht weiter.
> Vielleicht sieht jemand von euch einen Lösungsweg :)
In beiden Fällen ist es einfacher, die Kontraposition zu beweisen. Bei a) ist, wie sich zeigt, sogar die zweite Voraussetzung, dass $ \forall x (Px \to Qx)}$ gilt, überflüssig.
Die Kontraposition von a) (unter Vernachlässigung $ \forall x (Px \to Qx)}$) ist:
[mm]\exists x(R x \wedge Q x)\Rightarrow \neg \forall x (R x \rightarrow (\neg P x \wedge \neg Q x))[/mm]
Aus der Prämisse [mm] $\exists [/mm] x(R x [mm] \wedge [/mm] Q x)$ folgt die Existenz eines $c$ mit $R c [mm] \wedge [/mm] Q c$. Dieses $c$ beweist, dass [mm] $\forall [/mm] x (R x [mm] \rightarrow (\neg [/mm] P x [mm] \wedge \neg [/mm] Q x))$ nicht gelten kann, denn dann müsste auch $R [mm] c\rightarrow (\neg [/mm] P c [mm] \wedge \neg [/mm] Q c)$, also zugleich $Q c$ und [mm] $\neg [/mm] Q c$ gelten.
Die Kontraposition von b) ist:
[mm]\exists x (P x\wedge Q x \wedge \neg R x)\Rightarrow \neg \forall x((P x \vee Q x)\rightarrow R x)[/mm]
Aus der Prämisse [mm] $\exists [/mm] x (P [mm] x\wedge [/mm] Q x [mm] \wedge \neg [/mm] R x)$ folgt wieder die Existenz eines $c$ mit $P c [mm] \wedge [/mm] Q [mm] c\wedge \neg [/mm] R c$. Dieses $c$ beweist wiederum, dass [mm] $\forall [/mm] x((P x [mm] \vee [/mm] Q [mm] x)\rightarrow [/mm] R x)$ nicht gelten kann. Denn dann würde auch $(P c [mm] \vee [/mm] Q [mm] c)\rightarrow [/mm] R c)$, und somit zugleich $R c$ und [mm] $\neg [/mm] R c$ gelten.
Wie Du diese Überlegung in einen Deinem Prof genehmen Formalismus abfüllst ist wieder eine andere Frage.
|
|
|
|