www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Elasitizitätsberechnung
Elasitizitätsberechnung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elasitizitätsberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mo 20.11.2006
Autor: ragnar79

Aufgabe
Thema Wirtschaft:
Wleche Elastizität besitzen die folgenden Funktionen an der Stelle x = 2,5

bei f(x) = [mm] \bruch{x³-5*x+7}{2+x} [/mm]

Die Elastizität ist doch [mm] \bruch{f(x)'}{f(x)} [/mm] Also 1. Ableitung durch Funktion:

Die erste Ableitung von  f(x) = [mm] \bruch{x³-5*x+7}{2+x} [/mm] ist also im Zähler die Anwendung der Produktregel und dann die Anwendung der Quotientenregel?
Richtig sein soll  due Elastizität von 2,8395 Ich glaube ich habe mich bei der ersten Ableitung schon vertan, müsste also erst mal wissen ob man wirklich nach den Regeln vorgeht wie ich weiter oben geschrieben habe.

        
Bezug
Elasitizitätsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 Mo 20.11.2006
Autor: Dunbi

Also, von dieser Formel habe ich noch nichts gehört, aber wir mussten die Elastizität auch noch nie in einem Punkt berechnen. Wir mussten bisher immer zwischen zwei Werten/Punkten die Elastizität berechnen. Ich würde an deiner Stelle diese Frage ins Witschaftsforum stellen, da wird dir in Wirtschaftsfragen geholfen....bitte teile mir doch mal die Lösung mit...

Dunbi

P.S. Mit Derive und deiner Formel kommt nicht das Ergebnis heraus, welches rauskommen soll...

Bezug
        
Bezug
Elasitizitätsberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Di 21.11.2006
Autor: Dunbi

Also, ich habe da doch eine Lösung für dich!
Die Formel für die Elastizität ist nämlich:

[mm]\varepsilon=\bruch{f(x)}{x*f'(x)}[/mm]

Jedoch ist dein Ergebnis nach meinen Berechnungen Falsch:(

Denn [mm]f'(x)=\bruch{(2x^3+6x^2-17)}{(2+x)^2}[/mm]


--> [mm]\varepsilon=\bruch{\bruch{(x^3 - 5x + 7)}{(2 + x)}}{\bruch{(2x^3+6x^2-17)}{(2+x)^2*x}} [/mm]

Und das Aufgelößt und gekürzt:

[mm]\varepsilon=\bruch{(x + 2)*(x^3 - 5*x + 7)}{(x*(2*x^3 + 6*x^2 - 17))}[/mm]


[mm]\varepsilon(2.5)=81/230[/mm]

Ich denke, dass dies richtig sein müsste. Was sagt dein Lehrer dazu?

Bezug
                
Bezug
Elasitizitätsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:35 Di 21.11.2006
Autor: ragnar79

Danke für deine mühe und Hilfe. Naja ich bin im Fernstudium und habe hier nur ein Buch mit der Aufgabe und im hinteren Teil steht die o.g. Lösung. Ich frag mich echt wie der darauf kommt.

Bezug
                        
Bezug
Elasitizitätsberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:41 Di 21.11.2006
Autor: Dunbi

Kein Problem, hatte heute zufällig dieses Thema im Unterricht...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]