www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Elementarmatrizen
Elementarmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementarmatrizen: Anschreibung
Status: (Frage) beantwortet Status 
Datum: 11:23 Sa 05.02.2005
Autor: Reaper

Hallo

Bsp.: Schreiben Sie  [mm] \pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1} [/mm]
als Produkt von Elementarmatrizen an.


Hierbei sind ja schon die Zeilen umgeformt brauche also nur mehr die Spalten umzuformen damit ich die Diagonalmatrix bekomme........weiß aber nicht wie man Spalten umformt. Könnte mir jemand helfen.




        
Bezug
Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 Sa 05.02.2005
Autor: Martin243

Hi,

das funktioniert analog:
Um die Zeilen umzuformen, multiplizierst du ja von links. Um die entsprechenden Spaltenumformungen durchzuführen, stellst du die Elementarmatrix auf die rechte Seite der ursprünglichen Matrix.
Beachte aber, dass sich die Reihenfolge umdreht.

Beispiel:
Matrix A, Elementarmatrix E vertauscht 1. und 2. Zeile Spalte:
EA -> Zeilentausch
AE -> Spaltentausch


MfG
Martin

Bezug
                
Bezug
Elementarmatrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:09 Sa 05.02.2005
Autor: Reaper

Hallo..irgedwie komm ich nicht drauf...
Bsp.:
[mm] $\pmat{ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 } [/mm] in  [mm] \IZ_{2}$ [/mm]
Also rechne mal vor:

[mm] $\pmat{ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 }$ [/mm] ------------------> [mm] $\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 }$ ------------------------->$\pmat{ 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 } [/mm] $... und jetzt weiß ich nicht weiter.......und die Elementarmatrizen ... gibt es da eigentlich auch eine andere Methode wie ich da auf die draufkommen kann ohne dass ich alles Zeilen und Spaltenweise durchgehe weil sonst werde ich ja da nie fertig.........
Bitte zeigt mir ein Beispiel sonst kapier ich das so und so nicht..........




Bezug
                        
Bezug
Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Sa 05.02.2005
Autor: Martin243

Hi,

das Problem an diesem Beispiel ist, dass diese Matrix sich nicht in eine reine Diagonalmatrix umformen lässt, da nicht alle Spaltenvektoren linear unabhängig sind!

Deswegen mal ein Beispiel, das aufgeht:

A =  [mm] \pmat{ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 } [/mm]

Vertauschen von 1. und 3. Spalte ergibt:

[mm] A\pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm] = [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 } [/mm]


Vertauschen von 2. und 3. Zeile ergibt:

[mm] \pmat{ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 } A\pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm]  = [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1} [/mm]


Addieren der 2. zur 3. Zeile ergibt:
[mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 }\pmat{ 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 } A\pmat{ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 } [/mm] = [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm]


Nun löst du nach A auf, indem du von links und von rechts mit den entsprechenden Inversen der Elementarmatrizen (sie sind ja bekanntlich invertierbar) multiplizierst. Die Inversen ergeben in der richtigen Reihenfolge die gewünschte Darstellung.


MfG
Martin


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]