Elemente irreduzibel < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:06 Fr 14.11.2008 | Autor: | Riley |
Aufgabe | a) Zeigen Sie, dass im Ring [mm] \mathbb{Z}[\sqrt{5}] [/mm] = [mm] \mathbb{Z} [/mm] + [mm] \mathbb{Z} \cdot \sqrt{5} \subset \mathbb{C} [/mm] die Elemente 2, 3 + [mm] \sqrt{5} [/mm] und 3 - [mm] \sqrt{5} [/mm] irreduzibel sind und dass sie paarweise nicht assoziert sind.
b) Begründen Sie, dass aus a) und aus 2 [mm] \cdot [/mm] 2 = 4 = (3 + [mm] \sqrt{5})(3-\sqrt{5}) [/mm] folgt, dass 2, 3 + [mm] \sqrt{5} [/mm] und 3 - [mm] \sqrt{5} [/mm] keine Primelemente sind und dass [mm] \mathbb{Z}[\sqrt{5}] [/mm] kein ZPE-Ring ist. |
Hallo,
2 ist irreduzibel in [mm] \mathbb{Z}[5] [/mm] ist klar, da wir einen Satz in der VL hatten, dass 2 irreduzibel in [mm] \mathbb{Z}[d] [/mm] ist (d [mm] \in \mathbb{Z}, [/mm] d kein Quadrat).
Aber wie kann man zeigen, dass 3 + [mm] \sqrt{5} [/mm] bzw 3 - [mm] \sqrt{5} [/mm] im Ring [mm] \mathbb{Z}[5] [/mm] irreduzibel sind?
Das mit der Assoziiertheit habe ich so gemacht:
2 nicht ass. zu 3 + [mm] \sqrt{5}, [/mm] da [mm] \frac{3 + \sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}] \supset \mathbb{Z}[\sqrt{5}]^{\*}
[/mm]
2 nicht ass. zu 3 - [mm] \sqrt{5} [/mm] analog
3 + [mm] \sqrt{5} [/mm] nicht ass. zu 3 - [mm] \sqrt{5}, [/mm] da [mm] \frac{3-\sqrt{5}}{3+\sqrt{5}} [/mm] = [mm] \frac{7}{2} [/mm] + [mm] \frac{3}{2} \sqrt{5} \notin \mathbb{Z}[\sqrt{5}].
[/mm]
Stimm das so?
b) Wie kann man das mit den Primelementen zeigen, bzw dass sie keine sind?
Viele Grüße,
Riley
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:45 Fr 14.11.2008 | Autor: | otto.euler |
a) Für mich sieht deine Argumentation gut aus.
b) 4 hat zwei unterschiedliche Faktorierungen in irreduzible Elemente, deshalb kein ZPE.
Ich kenne für Primzahl die Definition: p ist eine Primzahl [mm] \gdw [/mm] ist p Teiler eines Produktes a*b, so muss p teilt a oder p teilt b folgen.
Damit müsste 2 ein Teiler von entweder [mm] 3+\wurzel{5} [/mm] oder [mm] 3-\wurzel{5} [/mm] sein, mithin wäre entweder [mm] 3+\wurzel{5} [/mm] oder [mm] 3-\wurzel{5} [/mm] nicht irreduzibel, im Widerspruch zu a). Analog umgekehrt.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:04 Sa 15.11.2008 | Autor: | Riley |
Hallo,
danke für die Hinweise.
Zunächst fehlt mir aber bei der a) noch wie ich zeigen kann, dass 3 [mm] +\sqrt{5} [/mm] und 3 - [mm] \sqrt{5} [/mm] in [mm] \mathbb{Z}[\sqrt{5}] [/mm] irredzuibel sind?
Hast du da noch einen Tipp dazu?
Wir hatten in der VL mal etwas mit dieser Gradfunktion oder Norm gemacht:
a + b [mm] \sqrt{d} \mapsto a^2 [/mm] - [mm] b^2 [/mm] d = (a + b [mm] \sqrt{d})(a-b \sqrt{d})
[/mm]
Ich weiß nicht ob man das hier verwenden kann?
Viele Grüße,
Riley
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:50 So 16.11.2008 | Autor: | PeterB |
Ich nenne die Norm mal $N$. Gradfunktion heißt sie mehr für euklidische Ringe und das ist keiner.
> Wir hatten in der VL mal etwas mit dieser Gradfunktion
> oder Norm gemacht:
> a + b [mm]\sqrt{d} \mapsto a^2[/mm] - [mm]b^2[/mm] d = (a + b [mm]\sqrt{d})(a-b \sqrt{d})[/mm]
Ja, das kann man hier verwenden: Die Norm von [mm] $3+\sqrt{5}$ [/mm] ist 4. Wäre diese Zahl jetzt reduzibel, dann wäre: [mm] $3+\sqrt{5}=xy$ [/mm] und wegen der Multiplikativität der Norm: $4=N(x)N(y)$. Dabei sind $x$ und $y$ keine Einheiten. Wenn die Norm von einem Element aber eine Einheit ist, dann ist dieses Element selbst eine Einheit. D.h. wir haben $N(x)=N(y)=2$ oder $N(x)=N(y)=-2$.
Jetzt kann man aber nachrechnen, dass [mm] $a^2-5b^2$ [/mm] mit [mm] $a,b\in\mathbb [/mm] Z$ nie kongruent $2$ modulo $4$ ist. Damit ist man fertig.
Gruß
Peter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:35 Di 18.11.2008 | Autor: | Riley |
Hi Peter,
danke für die Erklärung, jetzt hab ichs verstanden!
Viele Grüße,
Riley
|
|
|
|