www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Endlicher Körper
Endlicher Körper < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endlicher Körper: Prozentsatz der Lin. Abb.
Status: (Frage) beantwortet Status 
Datum: 15:29 Di 29.01.2008
Autor: Olllollol

Aufgabe
Für den Körper K = [mm] \IF_{p}, [/mm] bestimme man, wieviel Prozent aller Abbildungen von
[mm] K^{n} [/mm] in [mm] K^{m} [/mm] linear sind, Zeige, dass es im Falle p=2 , m=2 ,n=3 weniger als 0,1% sind.
Anm.: Mit [mm] \IF_{p} [/mm] ist ein endlicher Körper mit den Elementen {0,...,p-1} gemeint

Habe diese Frage in einer LA I Probeklausur gefunden, leider ohne Lösung. Ich komme gar nicht einmal auf den Trichter, wieviele Lin Abb. in diesem Körper überhaupt vorhanden sind... Bin also dringend auf eure Hilfe angewiesen...Vllt. könntet ihr noch ein paar erklärende Worte dazu schreiben... Danke. ;)

Mfg Ollie

        
Bezug
Endlicher Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Di 29.01.2008
Autor: felixf

Hallo Ollie

> Für den Körper K = [mm]\IF_{p},[/mm] bestimme man, wieviel Prozent
> aller Abbildungen von
>  [mm]K^{n}[/mm] in [mm]K^{m}[/mm] linear sind, Zeige, dass es im Falle p=2 ,
> m=2 ,n=3 weniger als 0,1% sind.
>  Anm.: Mit [mm]\IF_{p}[/mm] ist ein endlicher Körper mit den
> Elementen {0,...,p-1} gemeint
>
>  Habe diese Frage in einer LA I Probeklausur gefunden,
> leider ohne Lösung. Ich komme gar nicht einmal auf den
> Trichter, wieviele Lin Abb. in diesem Körper überhaupt
> vorhanden sind...

Also: wenn du Basen von [mm] $K^n$ [/mm] und [mm] $K^m$ [/mm] waehlst, ist jede lineare Abbildung [mm] $K^n \to K^m$ [/mm] durch eine $n [mm] \times [/mm] m$-Matrix mit Eintraegen in $K$ eindeutig beschrieben. Und umgekehrt gibt es zu jeder solchen Matrix eine lineare Abbildung.

Sprich: die Anzahl der linearen Abbildungen [mm] $K^n \to K^m$ [/mm] entsprechen der Anzahl der $n [mm] \times [/mm] m$-Matrizen.

LG Felix


Bezug
                
Bezug
Endlicher Körper: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:10 Di 29.01.2008
Autor: Olllollol

Jaja... Das ist mir schon sehrwohl klar, aber wie bekommne ich die Anzahl heraus und ein konkretes ergebnis ?

;D

Bezug
                        
Bezug
Endlicher Körper: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:28 Do 31.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]