www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Epsilon-Delta Kriterium
Epsilon-Delta Kriterium < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Epsilon-Delta Kriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Mi 18.01.2006
Autor: Micchecker

Aufgabe
Es sei die Funktion f[-1,1]--->IR stetig in 0 mit f(0)>0.Zeigen Sie: Es existiert ein u > 0 mit f(x) > 0 für x aus [-u,u]. Hinweis: Verwenden sie das Epsilon-Delta Kriterium.

Hi! Ich verstehe das Epsilon-Delta Kriterium nicht. Könnt ihr mir vielleicht helfen, diese Aufgabe zu lösen.

Danke

        
Bezug
Epsilon-Delta Kriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 20:08 Mi 18.01.2006
Autor: SEcki


> Es sei die Funktion f[-1,1]--->IR stetig in 0 mit
> f(0)>0.Zeigen Sie: Es existiert ein u > 0 mit f(x) > 0 für
> x aus [-u,u]. Hinweis: Verwenden sie das Epsilon-Delta
> Kriterium.

Dejavue, ich zitiere mal aus einem anderen Posting:
Setze mal ein geschikctes Epsilon an - zB [m]\varpesilon=\bruch{f(0)}{2}[/m]. Was ergibt sich aus der Stetigkeit?

>  Hi! Ich verstehe das Epsilon-Delta Kriterium nicht. Könnt
> ihr mir vielleicht helfen, diese Aufgabe zu lösen.

Wo ist das Problem mit dem Kriterium?

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]