Epsilon-delta-Kriterium < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:38 Fr 03.11.2006 | Autor: | dsan |
Aufgabe | Zeige dass [mm] x^3 [/mm] stetig ist. Benutze bitte das epsilon-delta-Kriterium. |
Hallo an alle,
irgendwie habe ich das epsilon-delta-Kriterium nicht richtig verstanden.
Für beliebiges x,a [mm] \in \IR [/mm] gilt dann.
|f(x)-f(a)| = [mm] |x^3-x^2| \le |x-a|(|x^2|+|a||x|+|a^2|).
[/mm]
Sei [mm] \delta \le [/mm] 1.
|x|-|a| [mm] \le [/mm] |x-a| < 1 [mm] \Rightarrow [/mm] |x| < 1-|a|.
Dann gilt mit |x| < 1-|a|, die Abschätzung
|f(x)-f(a)| < [mm] |x-a|(3|a^2|+3|a|+1).
[/mm]
Kann man jetzt [mm] \delta [/mm] := [mm] \bruch{\varepsilon}{(3|a^2|+3|a|+1)} [/mm] setzen, oder ist das völlig falsch ?
Wenn ja, kann man dann einfach |f(x)-f(a)| < |x-a| < [mm] \delta [/mm] = [mm] \bruch{\varepsilon}{(3|a^2|+3|a|+1)} [/mm] < [mm] \varepsilon [/mm] schreiben ?
Vorab schon mal vielen Dank.
Grüsse
dsan
|
|
|
|
> Zeige dass [mm]x^3[/mm] stetig ist. Benutze bitte das
> epsilon-delta-Kriterium.
> Hallo an alle,
>
> irgendwie habe ich das epsilon-delta-Kriterium nicht
> richtig verstanden.
Hallo,
anschaulich gesprochen:
f ist an der Stelle a stetig, wenn es zu einem vorgegebenen , beliebig kleinen [mm] (\varepsilon [/mm] -)Bereich um f(a) einen passenden - möglicherweise ganz kleinen - [mm] (\delta [/mm] -)Bereich um a gibt, welcher folgendes tut:
wackelt man innerhalb dieses Bereiches an "a", springt "f(a)" nicht nicht aus dem vorgegebenen Bereich.
Zur Aufgabe:
Sei [mm] \varepsilon [/mm] > 0 und sei |x-a| < [mm] \delta [/mm] mit [mm] \delta:= [/mm]
... wie wir [mm] \delta [/mm] definieren, lassen wir erstmal offen, bis wir genügend inspiriert sind. Wir füllen die Lücke später.
Das Ziel ist, |f(x)-f(a)| so abzuschätzen, daß wir |f(x)-f(a)| < [mm] \varepsilon [/mm] erhalten.
Auf geht's.
|f(x)-f(a)| [mm] =|x^3-a^3| =|(x-a)^3+3ax(x-a)| [/mm] =|x-a| [mm] |(x-a)^2+3ax| [/mm] =|x-a| [mm] |(x-a)^2+3a(x-a+a)| [/mm] = |x-a| [mm] |(x-a)^2+3a(x-a)+3a^2)| \le [/mm] |x-a| [mm] ((x-a)^2+3a|x-a|+3a^2)) [/mm] < [mm] \delta [/mm] ( [mm] \delta^2+3a \delta+3a^2)
[/mm]
= [mm] \delta^3+3a \delta^2+3a^2 \delta
[/mm]
Jetzt müssen wir kurz anhalten und überlegen: [mm] \delta^3+3a\delta^2+3a^2\delta [/mm] soll ja [mm] <\varepsilon [/mm] sein.
Wie müssen wir unser [mm] \delta [/mm] wählen?
Wenn wir's so machen, daß jeder der drei Terme [mm] <\bruch{\varepsilon}{3} [/mm] ist, haben wir gewonnen.
Dann machen wir es eben so: Wähle [mm] \delta:= [/mm] min {..., ..., ...}.
Das kann man nun oben hinschreiben. Dann schatzt man weiter ab:
[mm] <\bruch{\varepsilon}{3}+\bruch{\varepsilon}{3}+\bruch{\varepsilon}{3}=\varepsilon
[/mm]
Was hat man nun gezeigt:
zu jedem [mm] \varepsilon [/mm] > 0 findet man ein passendes [mm] \delta [/mm] >0 (nämlich besagtes [mm] \delta:= [/mm] min {..., ..., ...}) so daß für alle x mit |x-a| < [mm] \delta [/mm] gilt: |f(x)-f(a)| < [mm] \varepsilon.
[/mm]
Innerhalb von [mm] (a-\delta,a+\delta) [/mm] können wir nach Lust und Laune am x wackeln, f(x) springt nicht aus (f(a) [mm] -\varepsilon,f(a)+\varepsilon) [/mm] heraus.
Gruß v. Angela
|
|
|
|