Erlös und Gewinnfunktionen < Sonstiges < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:35 Do 28.10.2010 | Autor: | ich.... |
Aufgabe | 1)Ein Unternehmen der Automobilindustrie hat ein revolutionäres 1-Liter-Auto entwickelt. Mit diesem Auto ist das Unternehmen am Markt Angebotsmonopolist. Die nachgefragte Menge steht in folgendem zusammenhang mit dem Marktpreis:
PN:PN (x) = -3x +150; Dök (PN) = [0;50]. Die Gesamtkostenfunktion lautet: K:K(x)= 30x+900
a) Ermitteln Sie die Gleichungen der Erlös- und Gewinnfunktion
b) Ermitteln Sie die Nullstellen der Erlösfunktion.
c) Bei welcher Produktionsmenge ergibt sich der maximale Erlös. Wie hoch ist der maximale Erlös?
d) Zeichnen
e) Ermitteln sie die Gewinnschwelle und die Gewinngrenze
f) Bei welcher Ausbringungsmenge ist der Gewinn maximal, wie hoch ist der maximale Gewinn?
2)Bei der Inbetriebnahme einer Fotovoltaik-Anlage fallen Fixkosten [mm] K_{f} [/mm] in Höhe von 10GE an. Außerdem entstehen in Abhängigkeit von der erzeugten Strommenge in Megawattstunden (MWh)) Kosten, die sich wie folgt entwickeln: [mm] K_{v}(x)= \bruch{1}{50}x² [/mm] + [mm] \bruch{1}{5}x.
[/mm]
Messungen haben ergeben, dass die durchschnittliche jährliche Einstrahlung der Sonne in Norddeutschland 1MWh beträgt. Für Strom aus solarer Strahlungsenergie soll die Vergütung 1GE pro MWh betragen.
Bestimmen Sie die Gleichungen der Kosten-,Erlös- und Gewinnfunktion. |
Zur Aufgabe 1), ich verstehe die Zuordnung nicht, beziehungsweise ich kann mir sie auf keinster Weise plausibel erläutern.
PN:PN (x) = -3x +150; Dök (PN) = [0;50]. Die Gesamtkostenfunktion lautet: K:K(x)= 30x+900
Wenn x in PN(x) für den Marktpreis steht und zum Beispiel 50 ist, dann ist die Nachfrage 0? Und dann werden 0 Autos produziert, weil PN(x)= Anzahl an Autos oder wie kann ich das verstehen?
Oder wenn x in PN(x) 30 ist, ist PN(x) = 60, 60 Autos werden gebaut und es entstehen Kosten von 1.800 die sich mit dem Erlös decken?
Zu Aufgabe 2), hier versteh ich auch die Zuordnung nicht. Mit Fixkosten ergibt sich soweit ich weiß die
Kostenfunktion [mm] K_{v}(x)= \bruch{1}{50}x² [/mm] + [mm] \bruch{1}{5}x [/mm] +10
Muss ich zu der Kostenfunktion +1 hinzufügen, weil zusätzlich 1GE aufkommt? Und wie kann ich die Tatsache mit einbringen, dass jährlich 1MWh Strom durch Sonnenenergie entsteht?
In einer anderen Aufgabe fällt es mir schwer den Scheitelpunkt zu ermitteln. Es wird vorgegeben
Variablen Kosten: [mm] K_{v}(x) [/mm] = [mm] \bruch{1}{2}x² [/mm] +1,5x
Fixkosten : 3,125GE
Variable Erlös: E(x): 4,0625x
Aufgabenstellung : Ermitteln Sie die Scheitelpunkt der Gesamtkostenfunktion.
Gesamtkostenfunktion beinhaltet bei mir die Variablen Kosten+ die Fixkosten, d.h.
[mm] K_{v}(x) [/mm] = [mm] \bruch{1}{2}x² [/mm] +1,5x + 3,125GE
Nach Umformung bin ich zu der Scheitelpunktsform
GK(x) = (x+1,5)²+4 gekommen, also S(-1,5/4)
Jedoch spuckt mir mein Taschenrechner S(-1,5/2) raus, wieso?
Wäre nett, wenn Ihr mir helfen könntet (;
|
|
|
|
> 1)Ein Unternehmen der Automobilindustrie hat ein
> revolutionäres 1-Liter-Auto entwickelt. Mit diesem Auto
> ist das Unternehmen am Markt Angebotsmonopolist. Die
> nachgefragte Menge steht in folgendem zusammenhang mit dem
> Marktpreis:
> PN:PN (x) = -3x +150; Dök (PN) = [0;50]. Die
> Gesamtkostenfunktion lautet: K:K(x)= 30x+900
>
> a) Ermitteln Sie die Gleichungen der Erlös- und
> Gewinnfunktion
> b) Ermitteln Sie die Nullstellen der Erlösfunktion.
> c) Bei welcher Produktionsmenge ergibt sich der maximale
> Erlös. Wie hoch ist der maximale Erlös?
> d) Zeichnen
> e) Ermitteln sie die Gewinnschwelle und die Gewinngrenze
> f) Bei welcher Ausbringungsmenge ist der Gewinn maximal,
> wie hoch ist der maximale Gewinn?
>
> 2)Bei der Inbetriebnahme einer Fotovoltaik-Anlage fallen
> Fixkosten [mm]K_{f}[/mm] in Höhe von 10GE an. Außerdem entstehen
> in Abhängigkeit von der erzeugten Strommenge in
> Megawattstunden (MWh)) Kosten, die sich wie folgt
> entwickeln: [mm]K_{v}(x)= \bruch{1}{50}x²[/mm] + [mm]\bruch{1}{5}x.[/mm]
>
> Messungen haben ergeben, dass die durchschnittliche
> jährliche Einstrahlung der Sonne in Norddeutschland 1MWh
> beträgt. Für Strom aus solarer Strahlungsenergie soll die
> Vergütung 1GE pro MWh betragen.
>
> Bestimmen Sie die Gleichungen der Kosten-,Erlös- und
> Gewinnfunktion.
> Zur Aufgabe 1), ich verstehe die Zuordnung nicht,
> beziehungsweise ich kann mir sie auf keinster Weise
> plausibel erläutern.
>
>
> PN:PN (x) = -3x +150; Dök (PN) = [0;50]. Die
> Gesamtkostenfunktion lautet: K:K(x)= 30x+900
>
> Wenn x in PN(x) für den Marktpreis steht
Hallo,
ja, so ist das.
PN(x) ist dann die Menge, die beim Preis x nachgefragt wird.
> und zum Beispiel
> 50 ist, dann ist die Nachfrage 0?
Ja, weil's den Leuten zu teuer ist.
> Und dann werden 0 Autos
> produziert, weil PN(x)= Anzahl an Autos oder wie kann ich
> das verstehen?
PN sagt ja nicht, was produziert wird, sondern was nachgefragt wird.
Nehmen wir VW. Die stellen ja auch nicht die Produktion des Golfs ein, nur weil ihn für 200.000€ keiner kaufen würde.
>
> Oder wenn x in PN(x) 30 ist, ist PN(x) = 60, 60 Autos
> werden gebaut
Nein. Beim Preis von 30 GE pro Auto werden 60 Autos vrkauft.
> und es entstehen Kosten von 1.800
variable Kosten von 1800 GE,
die Gesamtkosten betragen K(30)=2700.
> die sich
> mit dem Erlös decken?
Die variablen Kosten decken sich mit dem Erlös.
>
> Zu Aufgabe 2), hier versteh ich auch die Zuordnung nicht.
> Mit Fixkosten ergibt sich soweit ich weiß die
> Kostenfunktion [mm]K_{v}(x)= \bruch{1}{50}x²[/mm] + [mm]\bruch{1}{5}x[/mm] +10
Es ist [mm] K(x)=K_v(x)+K_f(x),
[/mm]
also ist
$K(x)= [mm] \bruch{1}{50}x²$ [/mm] + [mm] $\bruch{1}{5}x$ [/mm] +10.
> Muss ich zu der Kostenfunktion +1 hinzufügen,
Nein. Das x steht für erzeugte xMWh, K(x) für die Kosten, die die Erzeugung von xMWh kostet.
Jede MWh wird mit 1GE vergütet. Dh. man bekommt pro MWh 1GE.
Wieviel bekommt man für xMWS? (Wird dies zu den Kosten addiert? Quatsch!)
Notiere die Erlösfunktion in Abhängigkeit von x. E(x)=...
Nun kannst Du die Gewinnfunktion aufstellen, und auch sagen, wieviel gewinn die Anlage pro Jahr durchschnittlich liefert.
Und addiert man das zu den Kosten? Quatsch, oder?
> weil
> zusätzlich 1GE aufkommt? Und wie kann ich die Tatsache mit
> einbringen, dass jährlich 1MWh Strom durch Sonnenenergie
> entsteht?
Das steht irgendwo.
>
>
> In einer anderen Aufgabe fällt es mir schwer den
> Scheitelpunkt zu ermitteln. Es wird vorgegeben
> Variablen Kosten: [mm]K_{v}(x)[/mm] = [mm]\bruch{1}{2}x²[/mm] +1,5x
> Fixkosten : 3,125GE
> Variable Erlös: E(x): 4,0625x
>
> Aufgabenstellung : Ermitteln Sie die Scheitelpunkt der
> Gesamtkostenfunktion.
>
> Gesamtkostenfunktion beinhaltet bei mir die Variablen
> Kosten+ die Fixkosten, d.h.
> [mm]K_{v}(x)[/mm] = [mm]\bruch{1}{2}x²[/mm]^2 +1,5x + 3,125GE
das ist dann nicht mehr [mm] K_v(x), [/mm] sondern K(x).
>
> Nach Umformung bin ich zu der Scheitelpunktsform
> GK(x) = (x+1,5)²+4 gekommen, also S(-1,5/4)
> Jedoch spuckt mir mein Taschenrechner S(-1,5/2) raus,
> wieso?
Weil die Scheitelpunktsform falsch ist.
Es ist [mm] (x+1.5)^2+4=x^2+3x+6.25, [/mm]
Du wolltest aber den Scheitelpunkt von [mm] $\bruch{1}{2}x²$^2 [/mm] +1,5x + 3,125 bestimmen. Du hast den Faktor [mm] \bruch{1}{2} [/mm] unterschlagen.
Es ist [mm] $\bruch{1}{2}x²$^2 [/mm] +1,5x + [mm] 3,125=\bruch{1}{2}*[(x+1.5)^2+4]=...
[/mm]
Gruß v. Angela
>
> Wäre nett, wenn Ihr mir helfen könntet (;
>
|
|
|
|