www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Ermittel Tangente und Normale
Ermittel Tangente und Normale < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ermittel Tangente und Normale: Beispielaufgabe
Status: (Frage) beantwortet Status 
Datum: 14:48 So 27.01.2008
Autor: Claudi89

Aufgabe
Gegeben ist eine Funktion f durch die Gleichung f(x)=x³-3x²+4 mit x Element der reellen Zahlen.
Bestimmen sie rechnerisch die Gleichungen der Tangenten t und der Normalen n an K im Punkt P(1/2). Die Tangente t schneidet die x-Achse im Punkt Q, die Normale schneidet die x-Achse im Punkt R. Die Punkte P,Q,R sind Eckpunkte eines Dreiecks. Berechnen sie den Inhalt dieser Dreiecksfläche.  

Leider scheiter ich schon beim ersten Teil der Aufgabe, da ich nicht weiß wie man die Tangente bzw. Normale berechnet. Vielleicht kann mir da ja mal jemand helfen. Vielen Dank schon mal.
Weiß zwar dass f´(x)=m, also der Anstieg der Tangente. Doch was nützt mir das?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ermittel Tangente und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 So 27.01.2008
Autor: abakus

Die Tangente ist eine Gerade, die im Berührungspunkt den gleichen Anstieg wie die Kurve hat und die durch eben diesen Kurvenpunkt verläuft.
Den Anstieg der Kurve an jeder beliebigen Stelle (und damit auch speziell an der Berührungsstelle) gibt die erste Ableitung an. Da der Berührungspunkt P(1|2) ist, braucht du also die 1. Ableitung an der Stelle 1. Deiene Tangente st also eine Gerade mit dem Anstieg ...., die durch den Punkt  P(1|2) verläuft.

Die Normate geht auch durch den Punkt P, hat aber einen anderen Anstieg (sie steht senkrecht auf der Tangente).


Bezug
                
Bezug
Ermittel Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:43 So 27.01.2008
Autor: Claudi89

also f´(x)=3x²-6x  f´(1)=3*1²-6*1=-3=m
Tangente: Y=-3x+5
Normale: Y=1/3x+5/3

ist das so richtig?

Bezug
                        
Bezug
Ermittel Tangente und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 So 27.01.2008
Autor: abakus


> also f´(x)=3x²-6x  f´(1)=3*1²-6*1=-3=m
>  Tangente: Y=-3x+5
>  Normale: Y=1/3x+5/3
>
> ist das so richtig?

Das Ergebnis sieht gut aus.


Bezug
                                
Bezug
Ermittel Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 So 27.01.2008
Autor: Claudi89

das ist doch schon mal schön zu hören. So jetzt aber weiter.
die gesuchten Punkte sind also:
P(1/2), Q(5/3,0), R(-5/0)und wie kann ich jetzt den Inhalt der Dreiecksfläche berechnen?

Bezug
                                        
Bezug
Ermittel Tangente und Normale: Antwort
Status: (Antwort) fertig Status 
Datum: 16:10 So 27.01.2008
Autor: Arvi-Aussm-Wald

für den flächeninhalt gilt ja A=0.5g*h

wobei du dann für h den abstand bspsweile von P nach [mm] \overline{RQ} [/mm] berechnest.
also den punkt suchen der von P auf [mm] \overline{RQ} [/mm] den geringsten abstand hat und dann den abstand berechnen. (sollte mit vektoren kein problem sein)

mfg


Bezug
                                                
Bezug
Ermittel Tangente und Normale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:14 So 27.01.2008
Autor: abakus

Die Verwendung von Vektoren ist hier wohl nicht angemessen. R ud Q liegen auf der x-Acse, und P(1|2) hat von der x-Achse den Abstand 2.

Bezug
                                                        
Bezug
Ermittel Tangente und Normale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 So 27.01.2008
Autor: Claudi89

Frage an Abakus: Wie soll man es denn anders machen? Hab jetzt einfach den Abstand von R und Q genommen, da die ja beide auf der X-Achse liegen und denn die Höhe von 2.
A=0,5*6/2/3*2= 6/2/3

Bezug
                                                                
Bezug
Ermittel Tangente und Normale: richtig gerechnet
Status: (Antwort) fertig Status 
Datum: 13:49 Di 29.01.2008
Autor: Roadrunner

Hallo Claudi!


[daumenhoch] Richtig gerechnet. Jedenfalls habe ich dasselbe erhalten!


Gruß vom
Roadrunner


Bezug
                                                        
Bezug
Ermittel Tangente und Normale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:21 So 27.01.2008
Autor: Arvi-Aussm-Wald

wenn doch q bei (5/3) liegt, liegen doch nicht alle auf der x-achse

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]