Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:33 Mi 26.01.2005 | Autor: | xsjani |
Hallo,
ich habe mal wieder eine recht schwierige Aufgabe bekommen und ich bräuchte mal wieder Eure Hilfe.
X,Y: [mm] \Omega \rightarrow \IR [/mm] seien Zufallsvariablen, so dass
E(X) und E(Y) existieren. Zeige, dass E(X+Y) existiert
und E(X+Y) = E(X) + E(Y) gilt:
(a) falls X,Y [mm] \in [/mm] D
Sei D:= [mm] {X:\Omega \rightarrow \IR: X messbar,
der Wertebereich A = {X(\omega): \omega \in \Omega} ist abzählbar,
\summe_{a \in A} a * P (X=a) < \infty}
[/mm]
Für X [mm] \in [/mm] D haben wir definiert:
EX := [mm] \integral [/mm] XdP:= [mm] \summe_{a \in A} [/mm] a* P(X=a).
D ist unter (punktweiser) Addition und Multiplikation abgeschlossen.
(b) für beliebige Zufallsvariablen
Danke, Juliane
|
|
|
|
Hallo Juliane, du kannst das in etwa so lösen:
Teil a)
Seien [mm] A:=\{a_1, a_2, a_3, ...\} [/mm] der (abzählbare) Wertebereich von X,
[mm] B:=\{b_1, b_2, b_3, ...\} [/mm] der (abzählbare) Wertebereich von Y und
[mm] C:=\{c_1, c_2, c_3, ...\} [/mm] der (abzählbare) Wertebereich von X+Y.
Außerdem bezeichnen [mm] \Omega_j(X):=\{\omega \in \Omega : X(\omega) = a_j \} [/mm] (j [mm] \in \IN) [/mm] und [mm] \Omega_j(Y) [/mm] bzw. [mm] \Omega_j(X+Y) [/mm] die entsprechenden Mengen für Y und X+Y. Dann gilt:
[mm] P(X=a_j) [/mm] = [mm] \summe_{\omega \in \Omega_j(X)} P(\{\omega\})
[/mm]
(... analog für Y bzw. X+Y ...)
Damit erhält man: E(X+Y) = [mm] \summe_{j \in \IN} c_j P(\{ X+Y=c_j \}) [/mm] = [mm] \summe_{j \in \IN} \summe_{\omega \in \Omega_j(X+Y)} (X+Y)(\omega) P(\{ \omega \}) [/mm] = ... = [mm] \summe_{\omega \in \Omega} X(\omega) P(\{ \omega \}) [/mm] + [mm] \summe_{\omega \in \Omega} Y(\omega) P(\{ \omega \}) [/mm] = [mm] \summe_{j \in \IN} \summe_{\omega \in \Omega_j(X)} a_j P(\{ \omega \})= \summe_{j \in \IN} \summe_{\omega \in \Omega_j(Y)} b_j P(\{ \omega \}) [/mm] = [mm] \summe_{j \in \IN} a_j P(\{X=a_j\}) [/mm] + [mm] \summe_{j \in \IN} a_j P(\{X=a_j\}) [/mm] =EX + EY.
Teil b)
X, Y meßbare Abbildungen [mm] \Rightarrow \exists (X_n)_n, (Y_n)_n [/mm] Treppenfunktionen mit [mm] X_n \uparrow [/mm] X, [mm] Y_n \uparrow [/mm] Y. Anwendung von Teil a) und Bepo Levi liefert die Behauptung, denn:
E(X+Y) = [mm] \integral_{\Omega} [/mm] X+Y dP = [mm] \integral_{\Omega} \limes_{n\to \infty} (X_n+Y_n) [/mm] dP = [mm] \limes_{n \to \infty} \integral _{\Omega} (X_n+Y_n) [/mm] dP =a)= [mm] \limes_{n \to \infty} \left( \integral _{\Omega} X_n dP + \integral _{\Omega} Y_n dP \right) [/mm] = ... = [mm] \integral_{\Omega} [/mm] X dP + [mm] \integral_{\Omega} [/mm] Y dP = EX+ EY. [mm] \Box
[/mm]
Ich habe an manchen Stellen kleine Zwischenschritte weggelassen, die
du dir nochmal selbst überlegen solltest.
Gruß
David
|
|
|
|