www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Erwartungswert und Varianz
Erwartungswert und Varianz < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: 3 Würfel - Aufgabe
Status: (Frage) für Interessierte Status 
Datum: 17:01 Do 24.02.2011
Autor: momo11111

Aufgabe
Zwei Spieler A und B werfen mit 3 idealen Würfeln nach folgender Spielregel:
A zahlt an B 1 €, wenn einmal die 6 fällt, 2 €, wenn zweimal die 6 fällt, 3 €, wenn dreimal die 6 fällt. Fällt keine 6, so zahlt B an A 1 €,
a) Wie groß ist der Erwartungswert des Gewinns für den Spieler A bzw. B?
b) Wie muss die Auszahlung von 1 € bei ,,keine 6" geändert werden, damit beide Spieler dieselbe Gewinnerwartung haben?

Hallihallo, ich übe für die Stochastik-Klausur ein paar Übungsaufgaben. Bei dieser Aufgabe bin ich mir unsicher. Könnte jemand das für mich nachrechnen?

..aaalso... man würfelt entweder null-, ein-, zwei- oder dreimal die Zahl 6. Für 0mal die 6 gibt es 125 Möglichkeiten, für einmal die 6 gibt es 25 möglichkeiten, für 2mal die 6 gibt es 5 möglichkeiten und für 3mal die 6 gibt es eine möglichkeit. Die Wahrscheinlichkeiten sind dann: 125/156, 25/156, 5/156 und 1/156.

a) Erwartungswert... -1€ * 125/156 + 1€ * 25/156 + 2€ * 5/156 + 3€ * 1/156 = - 0,60 € Der Erwartungswert des Gewinns ist für A ist 0,6 € und für B -0,6 €.

b)       0 = 125/156x + 1€ * 25/156 + 2€ * 5/156 + 3€ * 1/156
          0 = 125/156x  +0,2 €   mit dem kehrwert multipl.
          0 = x + 0,25€   minus 0,25€
-0,25€ = x

Wenn B bei ,,keine 6" 0,25 € auszahlt haben beide Spieler dieselbe Gewinnerwartung.
  
ch habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Erwartungswert und Varianz: Doppelpost
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Do 24.02.2011
Autor: Loddar

Hallo momo,

[willkommenmr] !!


Du hast diese Frage doch auch schon hier gestellt. Bitte unterlasse in Zukunft derartige Doppelposts.


Gruß
Loddar


Bezug
                
Bezug
Erwartungswert und Varianz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Do 24.02.2011
Autor: momo11111

Ja, kein Problem. ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]