Erzeuger einer Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:46 Mo 18.04.2011 | Autor: | Loriot95 |
Aufgabe | Geben Sie einen Erzeuger für die Gruppe [mm] \IZ_{81} [/mm] an. |
Guten Abend,
bei dieser Aufgabe weiß ich wirklich nicht wie ich das anstellen soll. Bei z.B [mm] \IZ_{7}, [/mm] kann man ja einfach so vorgehen: [mm] \IZ_{7} [/mm] = [mm] \{\overline{0}, \overline{1}, \overline{2}, \overline{3}..., \overlina{6} \}. \overline{3}^{2} [/mm] = [mm] \overline{2}, \overline{3}^{3} [/mm] = [mm] \overline{6}, \overline{3}^{4} [/mm] = [mm] \overline{4}, \overline{3}^{5} [/mm] = [mm] \overline{5}, \overline{3}^{6} [/mm] = [mm] \overline{1}. [/mm] Na ja, aber bei [mm] \IZ_{81} [/mm] ist das ziemlich viel aufwand. Das geht vermutlich auch anders. Freue mich über jede Hilfe.
LG Loriot95
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:00 Di 19.04.2011 | Autor: | Lippel |
Hallo,
> Geben Sie einen Erzeuger für die Gruppe [mm]\IZ_{81}[/mm] an.
>
> Guten Abend,
>
> bei dieser Aufgabe weiß ich wirklich nicht wie ich das
> anstellen soll. Bei z.B [mm]\IZ_{7},[/mm] kann man ja einfach so
> vorgehen: [mm]\IZ_{7}[/mm] = [mm]\{\overline{0}, \overline{1}, \overline{2}, \overline{3}..., \overlina{6} \}. \overline{3}^{2}[/mm]
> = [mm]\overline{2}, \overline{3}^{3}[/mm] = [mm]\overline{6}, \overline{3}^{4}[/mm]
> = [mm]\overline{4}, \overline{3}^{5}[/mm] = [mm]\overline{5}, \overline{3}^{6}[/mm]
> = [mm]\overline{1}.[/mm] Na ja, aber bei [mm]\IZ_{81}[/mm] ist das ziemlich
> viel aufwand. Das geht vermutlich auch anders. Freue mich
> über jede Hilfe.
Die Restklasse von jedem $a [mm] \in \IZ$ [/mm] mit $ggT(a,81)=1$, d.h. a und 81 sind teilerfremd, erzeugt [mm] $\IZ_{81}$.
[/mm]
Das kann man so zeigen: $ggT(a,81)=1 [mm] \Rightarrow \exists [/mm] n,m [mm] \in \IZ: [/mm] n*a+m*81 =1 [mm] \Rightarrow \overline{n*a} [/mm] = [mm] \overline{1}$. [/mm] Damit lässt sich jedes Element in [mm] $\IZ_{81}$, [/mm] als Vielfaches der Summe [mm] $(a+a+\ldots+a)$ [/mm] (mit n Summanden) darstellen, da die [mm] $\overline{1}$ [/mm] natürlich Erzeuger ist.
Um die Aufgabe zu beantworten, kannst du also auch einfach die 1 wählen, aber das wäre ja langweilig ;)
LG Lippel
|
|
|
|