www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Existenz einer Funktion
Existenz einer Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz einer Funktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:32 So 01.09.2013
Autor: MrPan

Aufgabe
Zeigen Sie dass genau eine stetige Funktion f: [mm] [0,1]->\IR [/mm] mit

f(x)=x+1/2*sin(f(x))

gibt.


Hallo,

ich bin gerade in der Klausurvorbereitung über diese Aufgabe gestolpert, und hab irgendwie keine Ahnung wie ich das zeigen soll. Deswegen habe ich auch keinen direkten Ansatz.

Wenn ich die Funtion umschreibe also

2*(f(x)-x)=sin(f(x))

=> 2*f(0)=sin(f(0))

dann folgt ja schonmal das f(x)-x den Wertebereich [-1/2,1/2] hat, und daraus folgt das f(x)-x beschränkt ist, und da x unbeschränkt ist f(x) auch unbeschränkt...aber weiter komm ich nicht. Wie geht man so eine Aufgabe an? Ich hab diesen Typ von Aufgabe noch nie gesehen. Vielen Dank für eure Hilfe!

mfg mrpan

        
Bezug
Existenz einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 So 01.09.2013
Autor: fred97


> Zeigen Sie dass genau eine stetige Funktion f: [mm][0,1]->\IR[/mm]
> mit
>  
> f(x)=x+1/2*sin(f(x))
>  
> gibt.
>  
> Hallo,
>  
> ich bin gerade in der Klausurvorbereitung über diese
> Aufgabe gestolpert, und hab irgendwie keine Ahnung wie ich
> das zeigen soll. Deswegen habe ich auch keinen direkten
> Ansatz.
>  
> Wenn ich die Funtion umschreibe also
>  
> 2*(f(x)-x)=sin(f(x))
>  
> => 2*f(0)=sin(f(0))
>  
> dann folgt ja schonmal das f(x)-x den Wertebereich
> [-1/2,1/2] hat, und daraus folgt das f(x)-x beschränkt
> ist, und da x unbeschränkt ist f(x) auch
> unbeschränkt...aber weiter komm ich nicht. Wie geht man so
> eine Aufgabe an? Ich hab diesen Typ von Aufgabe noch nie
> gesehen. Vielen Dank für eure Hilfe!
>  
> mfg mrpan


Der Raum C[0,1] ist mit der Maximumsnorm [mm] $||*||_{\infty}$ [/mm] ein Banachraum.

Definiere den Operator T:C[0,1] [mm] \to [/mm] C[0,1] durch

   [mm] $(Tf)(x):=x+1/2*\sin(f(x))$. [/mm]


Zeige :T ist bezüglich [mm] $||*||_{\infty}$ [/mm] eine Kontraktion auf  C[0,1] .

Fixpunktsatz von Banach !

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]