Existenz einer lin. Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:11 So 29.06.2008 | Autor: | daN-R-G |
Aufgabe | Beh.: Es gibt keine lineare Abbildung [mm]f:\IR^3 \to \IR^3[/mm], welche auf den Vektoren
[mm]u_1 := \vektor{1 \\ 5 \\ 7} u_2 := \vektor{2 \\ 8 \\ 3} u_3:= \vektor{1 \\ 1 \\ -15}[/mm] die Werte [mm]f(u_1) = u_1, f(u_2) = f(u_3) = 0[/mm] annimmt. |
Hallo!
Ich habe keine Aufgabe, die ich lösen möchte, sondern nur eine Frage, wie ich auf diese Lösung überhaupt mit dieser Argumentation komme.
Zunächst einmal steht ja fest, dass die 3 Vektoren l.a. sind, da der Rang gleich 2 ist.
Desweiteren gibt es somit ja eine Darstellung mit
[mm]\lambda_1 u_1 + \lambda_2 u_2 + \lambda_3 u_3 = 0[/mm] mit [mm]\lambda_1 \not= 0[/mm]. Denn so kann man schließlich ja auch die Lineare Abhängigkeit definieren.
Nur irgendwie erkenne ich den "Widerspruch" nicht, dass eine Anwendung von f dann [mm]\lambda_1 u_1= 0[/mm] liefern würde. Wo genau liegt der Widerspruch?
Bin ich einfach nur zu blind? Kann das jeman wohl einmal ein wenig erläutern?
Gibt es eigentlich generell ein vorgehen, wie man überprüfen kann, ob es eine bestimmte lineare Abbildung überhaupt gibt?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:47 So 29.06.2008 | Autor: | SEcki |
> Nur irgendwie erkenne ich den "Widerspruch" nicht, dass
> eine Anwendung von f dann [mm]\lambda_1 u_1= 0[/mm] liefern würde.
> Wo genau liegt der Widerspruch?
[m]\lambda_1 \ne 0 \Rightarrow \lambda_1 u_1 \ne 0[/m]
SEcki
|
|
|
|