www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Existenz eines Uneigtl. Integr
Existenz eines Uneigtl. Integr < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz eines Uneigtl. Integr: Frage
Status: (Frage) beantwortet Status 
Datum: 10:18 Mi 30.03.2005
Autor: Ernesto

Hallo ihr Denker da draussen, ich habe eine Frage.
Wenn ich das Integral  [mm] \integral_{a}^{b} [/mm] {f(x) dx} sin(x)/x dx bestimmen möchte und habe für die Integrationsgrenzen a= 0 und b =  [mm] \infty. [/mm] Kann ich das mit dem
Majorantenkriterium für Integrale Lösen??? z.B. ist ja sin(x) eine integrierbare Majorante

#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Existenz eines Uneigtl. Integr: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Mi 30.03.2005
Autor: Julius

Hallo!

Nein, natürlich ist [mm] $\sin(x)$ [/mm] keine integrierbare Majorante... Erstens ist es nicht integrierbar, zweitens keine Majorante...

Es kommt darauf an, welchen Integralbegriff du zugrunde legst.

Das uneigentliche Riemann-Integral

[mm] $(R)-\int\limits_0^{\infty} \frac{\sin(x)}{x}\, [/mm] dx$

existiert: Denn für $0<a<b$ liefert eine partielle Integration:

[mm] $\left\vert \int\limits_a^b \frac{\sin(x)}{x}\, dx \right\vert [/mm] = [mm] \left\vert \left[ \frac{-\cos(x)}{x} \right]_a^b - \int\limits_a^b \frac{\cos(x)}{x^2}\, dx \right\vert \le \frac{1}{a} [/mm] + [mm] \frac{1}{b} [/mm] + [mm] \int\limits_a^b \frac{1}{x^2}\, [/mm] dx = [mm] \frac{2}{a}$, [/mm]

und das Cauchy-Kriterium ergibt die Konvergenz des uneigentlichen Riemann-Integrals.

Aber Vorsicht:

Die Funktion [mm] $\left\vert \frac{\sin(x)}{x} \right\vert$ [/mm] ist nicht über [mm] $]0,+\infty[$ [/mm] uneigentlich Riemann-integrierbar, denn:

[mm] $\int\limits_{\pi}^{(n+1)\pi} \left\vert \frac{\sin(x)}{x} \right\vert\, [/mm] dx [mm] \ge \sum\limits_{k=1}^n \frac{1}{(k+1)\pi} \int\limits_{k\pi}^{(k+1)\pi} |\sin(x)|\, [/mm] dx = [mm] \frac{2}{\pi} \sum\limits_{k=1}^n \frac{1}{k+1} \to \infty$. [/mm]

Daher ist $x [mm] \mapsto \frac{\sin(x)}{x}$ [/mm] nicht über [mm] $]0,+\infty[$ [/mm] Lebesgue-integrierbar!

Viele Grüße
Julius

Bezug
                
Bezug
Existenz eines Uneigtl. Integr: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:30 Mi 30.03.2005
Autor: Ernesto

DAnke für die Super schnelle Antwort!!! Ich habe mich da nochmal durchgequält !!! ist ein sehr langer und komplizierter Beweis. Für  [mm] \integral_{0}^{ \infty} [/mm] sin(x)/x dx (habe ich das Integral aufgeteil in  [mm] \integral_{0}^{1} [/mm] und   [mm] \integral_{1}^{M} [/mm] für m -> [mm] \infty [/mm] FÜr das erste Integral habe ich gezeigt das die Folge der Integrale (I)n Konvergiert , indem ich gezeigt habe das die Folge monoton wachsend und nach oben beschränkt ist. Für für das zweite Integral ist ja ganz leicht!!! Aber warum muss ich sowas nur immer mühsam zusammenstricken, warum kann ich das nicht sehen so ein Mist. Ich schreibe in zwei Wochen eine Analysis 1 Klausur an der Uni Köln und lerne jeden TAg wie ein Depp. Definitionen, Sätze, Beweise und ich Beweise selber was das Zeug hällt!!! ich kann eigentlich alles aber dann kommt sowas und macht mich wieder fertig. na wie gesagt danke danke

MFG Kalli

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]