www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Extrempunkte der e-Funktion
Extrempunkte der e-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extrempunkte der e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Di 17.02.2015
Autor: abi15

Aufgabe
Diskutieren Sie die Funktion f(x) = x [mm] \* e^x [/mm]

Hallo, ich komme bei den Extrempunkten nicht weiter.
f'(x) = [mm] e^x(x [/mm] + 1)
f''(x) = [mm] e^x(2 [/mm] + x)

Da f'(x) = 0 sein muss:
0= [mm] e^x(x [/mm] + 1)
Ich nehme an, dass x einmal -1 sein müsste, da [mm] e^x \* [/mm] 0 = 0? Nur wie rechne ich das aus? Ich würde jetzt durch (x + 1) teilen, dann steht dort aber nur: 0= [mm] e^x [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Extrempunkte der e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Di 17.02.2015
Autor: Gonozal_IX

Hiho,

du solltest wissen: [mm] $e^x [/mm] > 0$
Damit gilt: [mm] $(x+1)e^x [/mm] = 0 [mm] \quad\gdw\quad [/mm] (x+1)=0$
Stelle nun nach x um.

Kann es weitere Nullstellen geben?

Gruß,
Gono

Bezug
                
Bezug
Extrempunkte der e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Di 17.02.2015
Autor: abi15

Hallo,
teilt man jetzt durch [mm] e^x [/mm] und darum steht dort nur noch (x +1) = 0?
In meinen Lösungen steht, dass der 1. Faktor nie null wird. Ist damit dann [mm] e^x [/mm] gemeint? Wenn ja dann gibt es nur eine, richtig?

Bezug
                        
Bezug
Extrempunkte der e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 Di 17.02.2015
Autor: DieAcht

Hallo abi15 und [willkommenmr]!


> teilt man jetzt durch [mm]e^x[/mm] und darum steht dort nur noch (x+1)=0?

Nein.

> In meinen Lösungen steht, dass der 1. Faktor nie null wird.

Richtig. Ein Produkt wird Null falls eines der Faktoren es wird.

> Ist damit dann [mm]e^x[/mm] gemeint? Wenn ja dann gibt es nur
> eine, richtig?

Richtig.


Gruß
DieAcht

Bezug
                                
Bezug
Extrempunkte der e-Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Di 17.02.2015
Autor: abi15

Hallo,
und wie kommt man dann auf (x + 1) = 0?

Bezug
                                        
Bezug
Extrempunkte der e-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Di 17.02.2015
Autor: Steffi21

Hallo, deine 1. Ableitung lautet

[mm] f'(x)=e^x*(x+1) [/mm]

zu lösen ist dann

[mm] 0=e^x*(x+1) [/mm]

du hast zwei Faktoren:

1. Faktor: [mm] e^x [/mm]

2. Faktor: x+1

Ein Produkt aus zwei Faktoren ist gleich Null, wenn einer der Faktoren gleich Null ist, bedenke 0*456=0 oder -345*0=0 oder 0*0=0

der Faktor [mm] e^x [/mm] kann nicht gleich Null werden, also kann nur der Faktor x+1 gleich Null werden, somit ist zu lösen x+1=0

Steffi

Bezug
                                                
Bezug
Extrempunkte der e-Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:55 Di 17.02.2015
Autor: abi15

Dankeschön für die Hilfe!
LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]