www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert Aufgabe!
Extremwert Aufgabe! < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert Aufgabe!: Bitte hilfe für Ansatz! IDEE
Status: (Frage) beantwortet Status 
Datum: 21:18 Mi 18.05.2005
Autor: mmlug

Hello Freunde,

Aufgabe :
Das Volumen einer zylindrische Saftdose beträgt [mm] 200cm^2 [/mm] . Die Deckflächen der Dose sind aus Pappe, während doe Mantelfläche aus Metall besteht. Wie muss man die Abmessungen wählen, damit bei dem vorgegebenen Volumen die Herstellungskosten minal werden? Der Preis des Matalls ist dopplet so hoch wie der Pappe.

Ich habe für diese Aufgabe leider noch Löusngen und IDEE.
BItte , könnt ihr die Lösungwege und IDee geben?

Ich freue mich sher auf Ihre baldige Antwort.


LB Gruß,
mmlug

        
Bezug
Extremwert Aufgabe!: Hilfe
Status: (Antwort) fertig Status 
Datum: 21:50 Mi 18.05.2005
Autor: Zwerglein

Hi, mmlug,

Der Preis der Dose hängt also von der Oberfläche ab.
Rechnen wir also diese "gestückelt" aus.

Zunächst Deckel + Boden:

[mm] O_{1} [/mm] = [mm] 2*r^{2}*\pi. [/mm]

Dann der Mantel:

[mm] O_{2} [/mm] = [mm] 2*r*\pi*h. [/mm]

Nun müssen wir einen Zusammenhang zwischen r und h finden, um eine der beiden Variablen durch die andere auszudrücken. Dazu benutzen wir die Tatsache, dass das Volumen konstant sein soll:

V = [mm] r^{2}*\pi*h [/mm] = 200    (übrigens: Tippfehler in der Angabe; muss natürlich [mm] cm^{3} [/mm] heißen!)

Am besten löst man nach h auf:

h = [mm] \bruch{200}{r^{2}*\pi} [/mm]

Nun kommt der Material-Preis ins Spiel. Die Angabe ist vermutlich so zu interpretieren, dass der Preis des Metalls pro Flächeneinheit doppelt so hoch ist wie der der Pappe (was mir immer noch zu wenig erscheint; aber naja!).

Daher: (P steht hier für "Preis")

P(r) = [mm] 2*r^{2}*\pi [/mm] + 2* [mm] 2r*\pi*\bruch{200}{r^{2}*\pi} [/mm]

Umgeformt:

P(r) = [mm] 2*r^{2}*\pi [/mm] + [mm] \bruch{800}{r} [/mm]    (natürlich gilt: r > 0)

Weiter geht's so:

Ableitung P'(r) bilden;

diese Ableitung = 0 setzen (kommt r [mm] \approx [/mm] 4 raus),

begründen, dass ein absolutes Minimum vorliegt.

Fragen dazu?




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]