Extremwert einer Fläche < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 00:00 Mi 18.03.2009 | Autor: | sharth |
[Dateianhang nicht öffentlich]
Guten Abend,
habe bei oben angehängter Aufgabe Probleme einen Ansatz zu finden.
Die Aufgabenstellung lautet:
Es ist die Gleichung f(x) einer Geraden durch die Punkte A und B so zu bestimmen, das der Flächengehalt des Dreieck minimal wird.
Habe mir bisher folgendes überlegt:
Zielfunktion: $A = [mm] \bruch{1}{2}*x*y$
[/mm]
Wobei die eine Seite (y) gegeben ist.
Nebenbedingung: $f(x) = mx+b$
Aber wie komme ich an die Gleichung der Geraden? Komme einfach nicht weiter an der Stelle. Wäre dankbar für ein paar Tipps.
Gruß,
sharth
Dateianhänge: Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:46 Mi 18.03.2009 | Autor: | leduart |
Hallo
meinst du mit x und y die Achsenabschnitte der Geraden?
nenn die lieber a und b. (weil x und y in der Geradengl. sind) dann kennst du die Gleichung der Geraden, die durch (0,b) und (a,0) geht. Da soll aber auch der Punkt (2,5) drauf liegen. dadurch kriegst du den Zusammenhang zw. a und b.
Oder bestimm aus a und dem Punkt (2,5) die Steigung der Geraden. dann hast du einen Punkt und eine Steigung also ne Gerade, und die hat nen Schnittpunkt b mit der y Achse.
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:12 Mi 18.03.2009 | Autor: | sharth |
Hallo Leduart,
ich habe als die Punkte
A) (2,5)
B) (a,0)
C) (0,b)
Daraus habe ich erstmal die Gleichung für die Steigung entwickelt.
$y = [mm] -\bruch{5}{a-2}*x+b$
[/mm]
Nun habe ich den Punkt A in die Gleichung eingesetzt und nach b umgestellt.
$b= [mm] -\bruch{10}{a-2}+5$
[/mm]
Meine Zielfunktion für den Flächeninhalt der Dreiecke lautet folgendermaßen:
$A = [mm] \bruch{1}{2}*a*b-(2*5)$
[/mm]
Als nächsten Schritt würde ich b in die ZF einsetzen und ableiten.
Bin mir nicht sicher ob ich auf dem richtigen Weg bin. Würd mich über Rückmeldung freuen.
> Gruss leduart
Gruß,
sharth
|
|
|
|
|
Hallo sharth,
> Hallo Leduart,
>
> ich habe als die Punkte
>
> A) (2,5)
> B) (a,0)
> C) (0,b)
>
> Daraus habe ich erstmal die Gleichung für die Steigung
> entwickelt.
>
> [mm]y = -\bruch{5}{a-2}*x+b[/mm]
>
> Nun habe ich den Punkt A in die Gleichung eingesetzt und
> nach b umgestellt.
>
> [mm]b= -\bruch{10}{a-2}+5[/mm]
>
> Meine Zielfunktion für den Flächeninhalt der Dreiecke
> lautet folgendermaßen:
>
> [mm]A = \bruch{1}{2}*a*b-(2*5)[/mm]
Welcher Flächeninhalt ist jetzt zu minimieren?
Der des Dreiecks durch die Eckpunkte (0,0) , (0,b), (a,0)
Oder dieses Dreiecks abzüglich des Rechtecks durch (2,5)
Das hat keinen Einfluss bei der Bestimmung des Extremwertes,
da der Flächeninhalt des Rechtecks konstant ist.
>
> Als nächsten Schritt würde ich b in die ZF einsetzen und
> ableiten.
> Bin mir nicht sicher ob ich auf dem richtigen Weg bin.
Ja, da bist Du auf dem richtigen Weg.
> Würd mich über Rückmeldung freuen.
>
> > Gruss leduart
>
> Gruß,
>
> sharth
>
Gruß
MathePower
|
|
|
|