Extremwertaufgabe *confused* < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:00 So 19.11.2006 | Autor: | Forty4 |
Aufgabe | Hey peepz,
Habe diese Aufgabe bereits gerechnet, leider weicht mein Ergebnis mit dem des Lösungsblattes der Leherin ab.
Hier die Fragestellung:
In einem Kreis mit dem Radius 8cm soll ein Rechteck eingezeichnet werden, das
a) einen möglichen großen Flächeninhalt besitzt
b) einen möglichst großen Umfang besitzt
|
Habe bei der ersten aufgabe für a= 8cm und b= 8cm raus.
Auf dem Lösungsblatt stehlt sowohl für A als auch für B jeweils 11,83 cm
Nun möchte ich gerne von euch wissen, ob ich falsch gerechnet (die Wahrscheinlichkeit des Fehlerquotient liegt bei mir sicherlich höher als bei der meiner Lehrerin) oder meine Lehrerin?
Ich brauche HILFE!!!
Thanks in advance!!!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo Forty4 und ,
tut mir leid, ich habe meine Glaskugel leider verlegt und kann nun nicht mehr Gedanken lesen, schon gar nicht über eine so große Entfernung.
Könntest du uns bitte deinen Lösungsweg hier aufschreiben, am besten mit dem Formeleditor], damit man die Terme auch schnell und gut lesen kann.
> Hey peepz,
>
> Habe diese Aufgabe bereits gerechnet, leider weicht mein
> Ergebnis mit dem des Lösungsblattes der Leherin ab.
>
> Hier die Fragestellung:
>
> In einem Kreis mit dem Radius 8cm soll ein Rechteck
> eingezeichnet werden, das
>
> a) einen möglichen großen Flächeninhalt besitzt
> b) einen möglichst großen Umfang besitzt
>
> Habe bei der ersten aufgabe für a= 8cm und b= 8cm raus.
> Auf dem Lösungsblatt stehlt sowohl für A als auch für B
> jeweils 11,83 cm
>
> Nun möchte ich gerne von euch wissen, ob ich falsch
> gerechnet (die Wahrscheinlichkeit des Fehlerquotient liegt
> bei mir sicherlich höher als bei der meiner Lehrerin) oder
> meine Lehrerin?
>
Gruß informix
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:03 Di 21.11.2006 | Autor: | Forty4 |
Hello,
sorry, ich hab' etwas länger gebraucht. Aber leider finde ich mich in dem forum nicht so gut zurecht!
Ich habe zu dieser Aufgabe eine Nebenbedingung und eine Hauptbedingung aufgestellt.
Meine Nebenbedingung zu Aufgabe a. lautet:
[mm] b=\wurzel{16² - a²}
[/mm]
meine Hauptbedingung
A(a,b)= a x b
Mein Problem war, dass ich die Zielfunktion A(a)= a X [mm] \wurzel{16² - a²} [/mm] um nach a aufzulösen, die Zahl unterm Wurzel getrennt aufgeschrieben habe sprich [mm] \wurzel{16²} [/mm] - [mm] \wurzel{a²} [/mm] und das darf ich nicht. Sie sagte mir, dass man hiervon eine Ableitung machen müsse.
Da ich nicht weiss, wie man hiervon die Ableitung bildet möchte ich euch um Hilfe fragen. Vielleicht könnt' ihr mir hierbei helfen!
|
|
|
|
|
Hallo, Du willst [mm] a*\wurzel{16^{2}-a^{2}}=a*\wurzel{256-a^{2}} [/mm] ableiten. Du brauchst die Produktenregel und die Kettenregel.
u=a u´=1
[mm] v=(256-a^{2})^{\bruch{1}{2}} [/mm] die Wurzel nur anders geschrieben
[mm] v'=\bruch{1}{2}(256-a^{2})^{-\bruch{1}{2}}*(-2a) [/mm] äußere Ableitung mal innere Ableitung
[mm] v'=\bruch{-2a}{2(256-a^{2})^{\bruch{1}{2}}}
[/mm]
[mm] v'=\bruch{-a}{\wurzel{256-a^{2}}}
[/mm]
jetzt Produktenregel machen: u'v+uv'
Steffi21
|
|
|
|