www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Extremwerte
Extremwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Fr 20.06.2008
Autor: jaruleking

Aufgabe
Zeigen Sie, dass die Funktion

f: [mm] \IR^2 \to \IR^2, f(x,y)=(1+e^y)cos(x)-y*e^y [/mm] unendlich viele lokale Maxima, aber kein lokales Minimum hat.

Lösung:

f ist in [mm] \IR^2 [/mm] beliebig oft diff.bar und es gilt:

[mm] \bruch{\partial f}{\partial x}(x,y)=-(1+e^y)sin(x) [/mm]

[mm] \bruch{\partial f}{\partial y}(x,y)=e^ycos(x)-(y+1)e^y [/mm]

[mm] \bruch{\partial^2 f}{\partial x^2}(x,y)=-(1+e^y)cos(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial x \partial y}(x,y)=-e^ysin(x) [/mm]

[mm] \bruch{\partial^2 f}{\partial y^2}(x,y)=e^ycos(x) -(y+2)e^y [/mm]

Notwendig für das Vorliegen eines lokalen Extremums (x,y) ist Df(x,y)=0, d.h. (x,y) ist eine Lösung des Gleichungssystems

[mm] -(1+e^y)sin(x)=0 [/mm]
[mm] e^ycos(x)-(y+1)e^y=0 [/mm]

Es folgt, dass sin(x)=0, also [mm] x=k\pi [/mm] mit k [mm] \in \IZ. [/mm] Dieses x dann in die zweite Gleichung eingesetzt liefert [mm] y=cos(k\pi)-1=(-1)^k-1 [/mm]


So bis hier hin habe ich auch alles noch verstanden. Jetzt folgt aber:

Wir untersuchen die Hessematrix von f an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] mit k [mm] \in \IZ [/mm] auf Definitheit, um lokale Extrema festzustellen.

So genau hier habe ich jetzt Verständnisprobleme:

Wir haben doch als Nullstellen der ersten partiellen Ableitung folgendes erhalten:


[mm] (k\pi,(-1)^k-1) [/mm] aber wieso untersuchen die Jetzt an den Stellen [mm] (2k\pi,0) [/mm] und [mm] ((2k+1)\pi,-2) [/mm] ? Das versteh ich noch nicht, wo kommen diese Stellen her?

Danke für hilfe.

Gruß

        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 20.06.2008
Autor: djmatey

Hallo,

das ist eine Fallunterscheidung:
Falls k gerade, gilt doch y = 0,
falls k ungerade, gilt y = -2.
Diese beiden Fälle werden nun einzeln betrachtet.
[mm] 2k\pi [/mm] bedeutet hier, dass die geraden k betrachtet werden, daher ist dann auch y = 0, d.h. die Stelle [mm] (2k\pi,0) [/mm]
[mm] (2k+1)\pi [/mm] bedeutet, dass die ungeraden k betrachtet werden, daher ist dann auch y = -2 und die zu untersuchende Stelle [mm] ((2k+1)\pi, [/mm] -2).

LG djmatey

Bezug
                
Bezug
Extremwerte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:05 Fr 20.06.2008
Autor: jaruleking

Das macht Sinn. Vielen Dank

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]