www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Extremwerte
Extremwerte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwerte: Tipp
Status: (Frage) beantwortet Status 
Datum: 09:53 Di 06.10.2009
Autor: patsch

[Dateianhang nicht öffentlich]

Die Extrempunkte habe ich ermittelt. Wie kann ich untersuchen ob es sich um relative oder absolute Extrempunkte handelt.

mfg patsch

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Di 06.10.2009
Autor: fred97

Zu (a) :

Es ist $g(x):= f(x, [mm] -\bruch{x}{2}) [/mm] = -5x+5$

g ist also weder nach oben noch nach unten beschränkt. Damit hat f weder ein absolutes Max. noch ein abs. Min.

Zu (b). verfahre wie bei (a): betrachte $f(x,-x)$

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]