Fachgerechte Beschreib. limes < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:41 Sa 25.04.2009 | Autor: | amberyo |
Hallo!
Ich habe keine Frage zu einer speziellen Aufgabe, mir geht es vielmehr darum, wie man das Verhalten im Unendlichen, den limes, bei einer Funktion (ganz egal ob e-Funktion etc.) fachgerecht aufschreibt.
Ich habe schon viele abenteuerliche Formen gesehen, weiß jedoch immer noch nicht, wie man das Verhalten im Unendlichen jetzt richtig aufschreibt.
Reicht es, wenn man eine sehr hohe und sehr kleine Zahl für x einsetzt und dann daraus folgert "strebt gegen Null" oder "strebt gegen Unendlich"??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:12 Sa 25.04.2009 | Autor: | Bossebaby |
Hey,
also fachgerecht aufschreiben Bsp:
[mm] f(x)=e^{x}, [/mm] von dieser Funktion ist nun der Grenzwert für [mm] x\to\infty [/mm] zu bestimmen also [mm] \limes_{x\rightarrow\infty}e^{x} [/mm] also schreibst du das einfach so hin
[mm] f(x)=e^x\Rightarrow\limes_{x\rightarrow\infty}e^{x}=e^{\limes_{x\rightarrow\infty}{x}}=\infty [/mm] ,also existiert dieser Grenzwert beispielsweise nicht,denn immer wenn du Ausdrücke der Form [mm] -+\infty [/mm] rausbekommst,dann ist dies ein uneigentlicher Grenzwert ,also keiner!
Allgemein schreibst du also immer nur das [mm] \limes_{x\rightarrow\infty} [/mm] vor deine Funktion und bastelst dann so lang an der Funktion herum bis das Ergebnis offensichtlich ist! Im letzten Schritt führst du dann den Limes quasi aus und schreibst einfach deinen eigentlich oder uneigentlichen Grenzwert hin! Am besten du schliesst dann Alles noch mit einem Antwortsatz ab,gerade im Falle der Nichtexistenz!!
Reicht es, wenn man eine sehr hohe und sehr kleine Zahl für x einsetzt und dann daraus folgert "strebt gegen Null" oder "strebt gegen Unendlich"??
Nein,das reicht iA nicht,denn du musst immer gucken welchen Grenzwert du [mm] betrachtest:\limes_{x\rightarrow\infty} [/mm] :hier bringt es dir Nichts kleine Werte für x einzusetzen,denn du willst ja das Verhalten von x gegen [mm] \infty
[/mm]
betrachten und nicht das Verhalten für x gegen 0!!etc.
Bei [mm] \limes_{x\rightarrow0} [/mm] setzt du natürlich entsprechend kleine Werte ein und guckst einfach was da rauskommt!
Im Allg. kannst du den Limes ,aber erst dann Ausführen wenn das Ergebnis wirklich offensichtich ist!
Z.B [mm] f(x)=1/x^2 \Rightarrow\limes_{x\rightarrow\infty} 1/x^2 [/mm] =0
Wenn du Funktionen mit mehreren Ausdrücken hast wie z.B
[mm] f(x)=\bruch{ln(ln(x))}{ln(x)},dann [/mm] reicht es nicht einfach zu schreiben
[mm] \limes_{x\rightarrow\infty}\bruch{ln(ln(x))}{ln(x)}=0 [/mm] ,denn Niemand wird dir glauben,dass du das einfach so gesehen hast! Verstehst du?
Hoffe ich konnte dir weiterhelfen!
LG Basti
|
|
|
|
|
Theoretisch kann man es so machen, ist aber sehr unschön. Am besten ist es auf den Grenzwert mithilfe von Grenzwertsätzen zu kommen. Ich zeig es dir an einem Beispiel:
[mm] \limes_{n\rightarrow\infty}(2^n+3^n+4^n)^{1/n}.
[/mm]
Wenn man jetzt n gegen unendlich laufen lässt hätte man ja:
[mm] (\infty+\infty+\infty)^0 [/mm] , was nicht definiert ist, also muss man den Term verändern.
[mm] \limes_{n\rightarrow\infty}(4^n)^{1/n}(\bruch{1}{2}^n+\bruch{3}{4}^n+1)^{1/n}
[/mm]
=
[mm] 4^1 [/mm] * [mm] (0+0+1)^0 [/mm] = [mm] 4^1 [/mm] * 1 = 4
anderes Beispiel:
[mm] \limes_{x\rightarrow\infty}\bruch{x^2+1}{x} [/mm] = [mm] \limes_{x\rightarrow\infty}\bruch{x+\bruch{1}{x}}{1} [/mm] = [mm] \bruch{\infty+0}{1} [/mm] = [mm] \infty
[/mm]
|
|
|
|