www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Faktorgruppe
Faktorgruppe < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Fr 27.10.2006
Autor: pelle2357

Help!
How do you express the (additive) factor group (ZxZ)/<(2,2)> as a product of cyclic groups? I know how to do this in a cyclic group, for example:
(Z(index)4 x Z(index)6) /<(0,2)>
but when it comes to (ZxZ)/<(9,12)> or (ZxZxZ)/<(2,4,8)> I'm totaly lost.

Would be extremly happy for an answer (german or english)

Thanks!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 01:06 So 29.10.2006
Autor: felixf

Hallo!

>  How do you express the (additive) factor group
> (ZxZ)/<(2,2)> as a product of cyclic groups? I know how to
> do this in a cyclic group, for example:
>  (Z(index)4 x Z(index)6) /<(0,2)>

> but when it comes to (ZxZ)/<(9,12)> or (ZxZxZ)/<(2,4,8)>
> I'm totaly lost.

Benutze doch bitte den Formeleditor, dann kann man das etwas besser lesen...

Wie machst du es denn bei Produkten von endlichen zyklischen Gruppen? Also etwa bei [mm] $(\IZ_4 \times \IZ_6)/\langle(0, 2)\rangle$? [/mm] Bei unendlich zyklischen Gruppen wie [mm] $\IZ$ [/mm] geht es doch genauso!

Du brauchst im Prinzip diese Aussage: Sind $G, G'$ Gruppen und $H [mm] \subseteq [/mm] G$, $H' [mm] \subseteq [/mm] G'$ Normalteiler, so ist $(G [mm] \times [/mm] G') / (H [mm] \times [/mm] H') [mm] \cong [/mm] (G/H) [mm] \times [/mm] (G'/H')$.

Damit kannst du hier alles wunderbar in Produkte von zyklischen GRuppen zerlegen.

LG Felix


Bezug
                
Bezug
Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Mo 30.10.2006
Autor: pelle2357

Thanks a lot Felix!
$ [mm] (\IZ_4 \times \IZ_6)/\langle(0, 2)\rangle $\cong(\IZ_4 \times \IZ_2) [/mm] because the element generates a subgroup [mm] \langle(0, 2)\rangle=\{(0,0),(0,2),(0,4)\} [/mm] of order 3, and the cyclic group  [mm] (\IZ_4 \times \IZ_6) [/mm] is of order 24, so the factor group must be isomorphic to [mm] \IZ_8 [/mm]  The first factor is left alone and the second [mm] \IZ_6 [/mm]  is collapsed by a subgroup of order 3. Hence $ [mm] (\IZ_4 \times \IZ_6)/\langle(0, 2)\rangle $\cong(\IZ_4 \times \IZ_2) [/mm]

I'm not sure that your "aussage" is correct since;
[mm] $(\IZ \times \IZ)/\langle(2, 2)\rangle $\cong(\IZ_2 \times \IZ) [/mm] and [mm] $(\IZ \times \IZ)/\langle(1, 2)\rangle $\cong \IZ [/mm]
Unfortunately I don't have the calculation for these examples.

Bezug
                        
Bezug
Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:30 Mo 30.10.2006
Autor: felixf

Hi pelle!

>  [mm](\IZ_4 \times \IZ_6)/\langle(0, 2)\rangle[/mm][mm] \cong(\IZ_4 \times \IZ_2)[/mm]
> because the element generates a subgroup [mm]\langle(0, 2)\rangle=\{(0,0),(0,2),(0,4)\}[/mm]
> of order 3, and the cyclic group  [mm](\IZ_4 \times \IZ_6)[/mm] is
> of order 24, so the factor group must be isomorphic to
> [mm]\IZ_8[/mm]

That's wrong: The factor group has 8 elements, but is not isomorphic to [mm] $\IZ_8$: [/mm]

>  The first factor is left alone and the second [mm]\IZ_6[/mm]  
> is collapsed by a subgroup of order 3. Hence [mm](\IZ_4 \times \IZ_6)/\langle(0, 2)\rangle[/mm][mm] \cong(\IZ_4 \times \IZ_2)[/mm]

In [mm] $\IZ_8$ [/mm] you have an element of order 8, but in [mm] $\IZ_4 \times \IZ_2$ [/mm] you don't.

> I'm not sure that your "aussage" is correct since;
>  [mm](\IZ \times \IZ)/\langle(2, 2)\rangle[/mm][mm] \cong(\IZ_2 \times \IZ)[/mm]
> and [mm](\IZ \times \IZ)/\langle(1, 2)\rangle[/mm][mm] \cong \IZ[/mm]

Both of these are wrong: [mm] $(\IZ \times \IZ)/\langle(2, 2)\rangle \cong \IZ_2 \times \IZ_2$, [/mm] and [mm] $(\IZ \times \IZ)/\langle(1, 2)\rangle \cong \IZ_1 \times \IZ_2 \cong \IZ_2$. [/mm]



EDIT: They are not wrong. And the statement is still correct (as the proof below shows). But the statement can't used here, as [mm] $\langle [/mm] (2, 2) [mm] \rangle$ [/mm] is not the product of two subgroups of [mm] $\IZ \times \IZ$. [/mm] Sorry for that :-(



To prove the statement, consider the map [mm] $\varphi [/mm] : G [mm] \times [/mm] G' [mm] \to [/mm] G/H [mm] \times [/mm] G/H'$, $(x, y) [mm] \mapsto [/mm] (x H, x H')$. You can quickly check that this is a surjective group homomorphism. And [mm] $\ker\varphi [/mm] = [mm] \{ (x, y) \in G \times G' \mid x \in H, y \in H' \} [/mm] = H [mm] \times [/mm] H'$, so by the Homomorphism Theorem, $(G [mm] \times [/mm] G')/(H [mm] \times [/mm] H') [mm] \cong [/mm] G/H [mm] \times [/mm] G'/H'$.

Best,
Felix


Bezug
                                
Bezug
Faktorgruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Mo 30.10.2006
Autor: pelle2357

Hi felix, thanks for your answer!
I'm with you on the first remark, that the factor group has 8 elements, but is not isomorphic to $ [mm] \IZ_8 [/mm] $. But then according to my book (a first course in abstract algebra by john b. fraleigh) $ [mm] (\IZ \times \IZ)/\langle(2, 2)\rangle [/mm] $$ [mm] \cong(\IZ_2 \times \IZ) [/mm] $
$ [mm] (\IZ \times \IZ)/\langle(1, 2)\rangle [/mm] $$ [mm] \cong \IZ [/mm] $
unfortunately these exercises are given without motivations just answers

In the book there is one example:
$ [mm] (\IZ \times \IZ)/\langle(1, 1)\rangle [/mm] $$ [mm] \cong \IZ [/mm] $
We may visualize [mm] \IZ \times \IZ [/mm] as points in the plane. The subgroup  [mm] \langle(1, 1)\rangle [/mm] consists of those points that lie on the 45 degree line through the origin. The coset [mm] (1,0)+\langle(1, 1)\rangle [/mm] consists of those points that lie on the 45 degree line through the point (1,0) we may then choose representatives ...,(-3,0),(-2,0),(-1,0),(0,0),(1,0),(2,0),... of these cosets to compute in the factor group. since these representatives correspond precisely to the point of Z on the x-axis the factor group must be isomorphic to Z.

I think that $ [mm] (\IZ \times \IZ)/\langle(1, 2)\rangle [/mm] $$ [mm] \cong \IZ [/mm] $ for exactly the same reason.
With this in mind, returning to my first question, how do I calculate
$ [mm] (\IZ\times\IZ\times\IZ)/\langle(2, 4,8)\rangle [/mm] $

It's a tricky one!

/Pelle

Bezug
                                        
Bezug
Faktorgruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:52 Mo 30.10.2006
Autor: felixf

Hi Pelle!

> Hi felix, thanks for your answer!
>  I'm with you on the first remark, that the factor group
> has 8 elements, but is not isomorphic to [mm]\IZ_8 [/mm].

Ok.

> But then
> according to my book (a first course in abstract algebra by
> john b. fraleigh) [mm](\IZ \times \IZ)/\langle(2, 2)\rangle[/mm][mm] \cong(\IZ_2 \times \IZ)[/mm]

You're right. I noticed I made a mistake, as [mm] $\langle [/mm] (2, 2) [mm] \rangle \neq \langle [/mm] 2 [mm] \rangle \times \langle [/mm] 2 [mm] \rangle$... [/mm]

> [mm](\IZ \times \IZ)/\langle(1, 2)\rangle[/mm][mm] \cong \IZ[/mm]
>  
> unfortunately these exercises are given without motivations
> just answers
>
> In the book there is one example:
>  [mm](\IZ \times \IZ)/\langle(1, 1)\rangle[/mm][mm] \cong \IZ[/mm]
> We may visualize [mm]\IZ \times \IZ[/mm] as points in the plane. The
> subgroup  [mm]\langle(1, 1)\rangle[/mm] consists of those points
> that lie on the 45 degree line through the origin. The
> coset [mm](1,0)+\langle(1, 1)\rangle[/mm] consists of those points
> that lie on the 45 degree line through the point (1,0) we
> may then choose representatives
> ...,(-3,0),(-2,0),(-1,0),(0,0),(1,0),(2,0),... of these
> cosets to compute in the factor group. since these
> representatives correspond precisely to the point of Z on
> the x-axis the factor group must be isomorphic to Z.

Exactly.

> I think that [mm](\IZ \times \IZ)/\langle(1, 2)\rangle[/mm][mm] \cong \IZ[/mm]
> for exactly the same reason.

Yes. As it does for [mm] $\langle(1, n)\rangle$ [/mm] for every $n [mm] \in \IZ$. [/mm]

>  With this in mind, returning to my first question, how do
> I calculate
> [mm](\IZ\times\IZ\times\IZ)/\langle(2, 4,8)\rangle[/mm]

>

> It's a tricky one!

Depends on what you know :)

Do you know how to compute Hermite normal forms of integer matrices? By multiplying $(2, 4, 8)$ by unimodular $3 [mm] \times [/mm] 3$-matrices with entries in [mm] $\IZ$, [/mm] you will get new vectors $(a, b, c)$ such that [mm] $\IZ^3 [/mm] / [mm] \langle [/mm] (2, 4, 8) [mm] \rangle \cong \IZ^3 [/mm] / [mm] \langle [/mm] (a, b, c) [mm] \rangle$. [/mm] Now, if you multiply $(2, 4, 8)$ with a good matrix such that $(a, b, c)$ is of an easy form, you can directly read off from [mm] $\IZ^3 [/mm] / [mm] \langle [/mm] (a, b, [mm] c)\rangle$ [/mm] how [mm] $\IZ^3 [/mm] / [mm] \langle [/mm] (2, 4, 8) [mm] \rangle$ [/mm] looks like.
(If you don't know the Hermite normal form, you can still fiddle around and try to find an unimodular matrix by trying around.)

Best,
Felix


Bezug
                                                
Bezug
Faktorgruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 02:29 Di 31.10.2006
Autor: pelle2357

Hi Felix and thanks again.
This is what I know:
Such matrices are lower triangular, non-negative and each row has a unique maximum entry on the main diagonal. They can be constructed from an arbitrary non-singular matrix A using the rules:
1. adding an integer multiple of one column to another
2. exchanging two columns
3. multiplying one column by -1

or by trail and error, Multiplying A with a unimodular matrix U :)

How do I continue? Should the diagonal in the matrix correspond to the generator of the subgroup?

> Now, if you multiply [mm](2, 4, 8)[/mm] with a good matrix such that
> [mm](a, b, c)[/mm] is of an easy form, you can directly read off
> from [mm]\IZ^3 / \langle (a, b, c)\rangle[/mm] how [mm]\IZ^3 / \langle (2, 4, 8) \rangle[/mm]
> looks like.

Sorry I don't understand, should my goal be to get something like $ [mm] \IZ^3 [/mm] / [mm] \langle [/mm] (1, 1, [mm] a)\rangle [/mm] $

It's getting too late for this :-)

Pelle

Bezug
                                                
Bezug
Faktorgruppe: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:36 Do 09.11.2006
Autor: pelle2357

Hi!
Trying to solve $ [mm] (\IZ\times\IZ\times\IZ)/\langle(2, 4,8)\rangle [/mm] $
[mm] $(1,2,4)+\langle(2,4,8)\rangle$ [/mm] must be of order 2 in the factor group and [mm] $(0,1,1)+\langle(2,4,8)\rangle$ [/mm] and [mm] $(0,0,1)+\langle(2,4,8)\rangle$ [/mm] generates infinite cyclic subgroups of the factor group. So it would be reasonable to presume that $ [mm] (\IZ\times\IZ\times\IZ)/\langle(2, 4,8)\rangle\cong(\IZ_2 \times \IZ\times\IZ) [/mm] $ To prove the presumption I have to define a homomorphism [mm] \alpha [/mm] mapping [mm] (\IZ\times\IZ\times\IZ) [/mm] onto [mm] (\IZ_2 \times \IZ\times\IZ) [/mm] having kernel [mm] \langle(2,4,8)\rangle [/mm] . The properties [mm] $\alpha(1,2,4)=(1,0,0)$ [/mm] and [mm] $\alpha(0,1,1)=(0,1,1)$ [/mm] and [mm] $\alpha(0,0,1)=(0,0,1)$ [/mm] and [mm] $\alpha((k,l,m)+(n,o,p)+(q,r,s))=\alpha(k,l,m)+\alpha(n,o,p)+\alpha(q,r,s)$. [/mm] Also the condition that for any element [mm] (p,q,r)\in(\IZ_2 \times \IZ\times\IZ) [/mm] there is an element [mm] (s,t,u)\in(\IZ \times \IZ\times\IZ) [/mm] such that [mm] $\alpha(s,t,u)=(p.q.r)$ [/mm] and the last step would be to show that the kernel is contained in [mm] \langle(2,4,8)\rangle [/mm] and that [mm] \langle(2,4,8)\rangle [/mm] is contained in the [mm] $ker(\alpha)$ [/mm] If all the conditions hold it would prove that the factor group and [mm] (\IZ_2 \times \IZ\times\IZ) [/mm] are isomorphic.
Is this way easier than multiplying with matrices? Is the reasoning above correct?

Bezug
                                                        
Bezug
Faktorgruppe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 14.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]