Faltung stetiger Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es seien X und Y unabhängige Zufallsvariablen. X sei gleichverteilt auf (0,1) und Y sei gleichverteilt auf (0,2). Bestimmen Sie die Dichte von X+Y. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Also prinzipiell ist mir schon klar, wie man diese Faltung berechnet, allerdings habe ich Schwierigkeiten mit der Festlegung der Integrationsgrenzen.
Folgendes habe ich schon berechnet:
[mm] f_X_+_Y = \integral_{0}^{1} 0,5 *1_(_0_,_2_) (z-x)\, dx [/mm]
Jetzt kann ja z verschiedene Werte annehmen und dadurch ergeben sich die jeweiligen Integrationsgrenzen, aber wie lege ich diese fest?!
Ich hatte noch folgende Überlegung gemacht:
0<= (z-x) <= 2
und damit
z >= x >= z-2
und außerdem gilt
0<= x <= 1
Und jetzt?
(Entschuldigt bitte - ich komme mit der Formeleingabe noch nicht zurecht...)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:19 Fr 03.10.2008 | Autor: | Infinit |
Hallo Fragenhaber,
Dein Ansatz mit der Faltung der Einzeldichten ist okay, aber die Schreibweise ist etwas gewöhnungsbedürftig. Was Du ausrechnen möchtest ist doch
$$ [mm] f_{x+y}(z) [/mm] = [mm] \int f_x [/mm] (x) [mm] \cdot f_{z-x} [/mm] (x) [mm] \, [/mm] dx $$ und das bedeutet, dass Du verschiedene Integrationsbreiche berücksichtigen musst. Ich habe Dir die Dichten für verschiedene Werte von z mal aufgemalt und Du musst nun über den Bereich integrieren,in dem sich die Dichten überlappen.
[Dateianhang nicht öffentlich]
Für z = 0 ist dies nicht der Fall, für z = 1 dagegen schon. Der Dichteverlauf wird also so aussehen, dass die Dichte zunächst Null ist, dann linear ansteigt bis z = 1, anschließend konstant bleibt bis z = 2, um dann bis z = 3 wieder auf Null abzufallen.
Fröhliches Rechnen,
Infinit
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Hallo infinit!
Also deine Schreibweise sagt mir wiederum leider nichts. Ich kenne aus meinem Skript und Büchern nur folgende Definition:
[mm] f_X_+_Y (z)= f_X *f_Y = \integral_{-\infty}^{\infty}{f_X(x)*f_Y(z-x)dx} [/mm]
Jetzt meine Fragen zu deinem Tipp:
Woher weiß ich denn, dass ich [mm] f_X_+_Y (z) [/mm] auf (0,3) betrachten muss?
Durch meine vorliegende Lösung kann ich auch deine Zeichnungen nachvollziehen, allerdings verstehe ich eben nicht, warum mann die drei folgenden Fälle betrachten muss:
z [mm] \in [/mm] (0,1)
z [mm] \in [/mm] (1,2)
z [mm] \in [/mm] (2,3)
Wahrscheinlich ist das alles ganz simpel, aber ich habe noch nichts Hilfreiches in Büchern oder Internet gefunden. Ich habe ja auch eine Lösung vorliegen, nur verstehe ich sie nicht
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:17 Fr 03.10.2008 | Autor: | Infinit |
Der Integrationsbereich ergibt sich aus dem Definitionsbereich der Ursprungsdichten. Ich male mir bei so einer Faltung immer die beiden zu faltenden Größen auf, sonst wüßte ich jetzt keine mathematische Methode, um diese Bereiche zu bestimmen. Es handelt sich ja schließlich um drei unterschiedliche Bereiche und die musst Du erst mal identifizieren. Mir ist kein analytisches Verfahren bekannt, dass Dir diese Bereiche automatisch liefert, sorry.
Viele Grüße,
Infinit
P.S.: Deine Schreibweise ist eindeutiger als meine, bleibe bei ihr und schiebe die eine Dichte gespiegelt unter der anderen durch.
|
|
|
|
|
Danke für die Tipps!
Ich habe mir noch andere Artikel aus dem Forum angeschaut und es jetzt einigermaßen verstanden
|
|
|
|