www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Familie der p-Normen auf R^n
Familie der p-Normen auf R^n < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Familie der p-Normen auf R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:31 So 25.04.2010
Autor: congo.hoango

Aufgabe
Betrachten Sie für [mm] p\ge [/mm] 1 die Familie der p-Normen || [mm] \cdot ||_p [/mm] auf [mm] R^n, [/mm] ergänzt durch die Maximumsnorm || [mm] \cdot ||_\infty [/mm] für [mm] p=\infty. [/mm] Für [mm] p\in [1,\infty] [/mm] sei

[mm] B^p:=\{x\in R^n: ||x||_p <1\} [/mm]

die jeweilige Einheitskugel.

a) Skizzieren Sie [mm] B^1, B^2, B^5, B^{\infty} [/mm] im [mm] R^2. [/mm]
b) Finden Sie Konstanten [mm] 0              [mm] c_p ||x||_p \le ||x||_1 \le C_p ||x||_p. [/mm]

Überlegen Sie, inwieweit diese Konstanten optimal sind.

[...]

Hallo,

irgendwie ist mir nicht klar, wie die [mm] ||\cdot||_p [/mm] aussehen....Die Maximusnorm ist mir bekannt, aber wie z.B. [mm] ||x||_5 [/mm] aussieht, bzw. was diese Norm genau macht, ist mir nicht klar. Ist das jedes Mal eine Rechenoperation wie diese:

[mm] \wurzel[5]{x_1^5 + x_2^5 + ... + x_n^5} [/mm]

Die Antwort zu a) habe ich bereits gegoogelt, aber mit ist nicht klar, wieso die jeweilgen Einheitskugeln so aussehen.

Vlt. kann ich ja dann die b) alleine lösen, mal schaun :-)

Danke schonmal für Antworten und Gruß

vom congo.

        
Bezug
Familie der p-Normen auf R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 So 25.04.2010
Autor: schachuzipus

Hallo congo.hoango,

> Betrachten Sie für [mm]p\ge[/mm] 1 die Familie der p-Normen ||
> [mm]\cdot ||_p[/mm] auf [mm]R^n,[/mm] ergänzt durch die Maximumsnorm ||
> [mm]\cdot ||_\infty[/mm] für [mm]p=\infty.[/mm] Für [mm]p\in [1,\infty][/mm] sei
>  
> [mm]B^p:=\{x\in R^n: ||x||_p <1\}[/mm]
>  
> die jeweilige Einheitskugel.
>  
> a) Skizzieren Sie [mm]B^1, B^2, B^5, B^{\infty}[/mm] im [mm]R^2.[/mm]
>  b) Finden Sie Konstanten [mm]0
> alle x [mm]\in R^n[/mm] gilt:
>               [mm]c_p ||x||_p \le ||x||_1 \le C_p ||x||_p.[/mm]
>  
> Überlegen Sie, inwieweit diese Konstanten optimal sind.
>  
> [...]
>  
> Hallo,
>  
> irgendwie ist mir nicht klar, wie die [mm]||\cdot||_p[/mm]
> aussehen....Die Maximusnorm ist mir bekannt, aber wie z.B.
> [mm]||x||_5[/mm] aussieht, bzw. was diese Norm genau macht, ist mir
> nicht klar. Ist das jedes Mal eine Rechenoperation wie
> diese:
>  
> [mm]\wurzel[5]{x_1^5 + x_2^5 + ... + x_n^5}[/mm]

Na, da fehlen die Betragstriche!

Es ist für [mm] $\vec{x}=(x_1,\ldots, x_n)\in\IR^n$ [/mm] doch [mm] $||\vec{x}||_5=\sqrt[5]{|x_1|^5+\ldots+|x_n|^5}$ [/mm]

Im [mm] $\IR^2$ [/mm] mit [mm] $\vec{x}=(x,y)$ [/mm] dann [mm] $||\vec{x}||_5=\sqrt[5]{|x|^5+|y|^5}$ [/mm]

>  
> Die Antwort zu a) habe ich bereits gegoogelt, aber mit ist
> nicht klar, wieso die jeweilgen Einheitskugeln so aussehen.

>

Nun, zum Glück sollst du das Ganze ja im [mm] $\IR^2$ [/mm] skizzieren, anders wäre auch schlecht wegen mangelnder Vorstellungskraft ;-)

Im [mm] $\IR^2$ [/mm] ist für [mm] $\vec{x}=(x,y)$ [/mm] dann etwa [mm] $||\vec{x}||_1=|x|+|y|$ [/mm]

Und entsprechend [mm] $B_1(0)$ [/mm] bzgl. [mm] $||.||_1$, [/mm] also der 1-Ball um 0 bzgl. der 1-Norm (ich schreibe das der Deutlichkeit wegen mal so, also etwas anders als du ...)

[mm] $B_1(0)=\{(x,y)\in\IR^2\mid |x|+|y|<1\}$ [/mm]

Um zu sehen, welches Gebilde das ist, löse erstmal $|x|+|y|=1$

Also $|y|=1-|x|$

Also [mm] $y=\begin{cases} 1-|x|, & \mbox{für } y\ge 0 \\ |x|-1, & \mbox{für } y<0 \end{cases}$ [/mm]

Noch die Beträge für $|x|$ beachten und du erhältst 4 Geradenstücke, die dir die Einheitskreisscheibe im [mm] $\IR^2$ [/mm] bzgl. der 1-Norm begrenzen. Das Innere des Gebildes ist dann [mm] $B_1(0)$ [/mm] bgl. [mm] $||.||_1$ [/mm] (geometrisch ist das natürlich kein Kreis, bzw. keine Kreisscheibe)

Entsprechend für etwa [mm] $||.||_{\infty}$ [/mm] im [mm] $\IR^2$ [/mm]

Schaue dir die Menge [mm] $\{\vec{x}=(x,y)\in\IR^2\mid ||\vec{x}||_{\infty}<1, \text{dh.} \max\{|x|,|y|\}<1\}$ [/mm] an ...

Bzgl. der 2-,5-Normen entsprechend ..., die 2-Norm (euklidiche Norm) ist ja hinreichend aus der Schule bekannt, der Einheitsball entspricht dem euklidischen Einheitskreis ...

> Vlt. kann ich ja dann die b) alleine lösen, mal schaun
> :-)
>  
> Danke schonmal für Antworten und Gruß
>  
> vom congo.

Gruß

schachuzipus

Bezug
                
Bezug
Familie der p-Normen auf R^n: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 So 25.04.2010
Autor: congo.hoango


> [mm]B_1(0)=\{(x,y)\in\IR^2\mid |x|+|y|<1\}[/mm]
>  
> Um zu sehen, welches Gebilde das ist, löse erstmal
> [mm]|x|+|y|=1[/mm]

Wieso denn auf einmal = 1 und nicht < 1?

Aber ansonsten ist mir vieles klarer dank Deiner Antwort!
Dann versuche ich mich mal an der b).

Danke und Gruß vom

congo.

Bezug
                        
Bezug
Familie der p-Normen auf R^n: Antwort
Status: (Antwort) fertig Status 
Datum: 13:47 So 25.04.2010
Autor: schachuzipus

Hallo nochmal,

> > [mm]B_1(0)=\{(x,y)\in\IR^2\mid |x|+|y|<1\}[/mm]
>  >  
> > Um zu sehen, welches Gebilde das ist, löse erstmal
> > [mm]|x|+|y|=1[/mm]
>  
> Wieso denn auf einmal = 1 und nicht < 1?

Das sollte nur vereinfachend sein, damit du die Geradenstücke, die diese Einheitskreisscheibe begrenzen, besser berechnen kannst.

Wenn du es lieber magst, kannst du direkt die Ungleichung  [mm] $\ldots [/mm] <1$ betrachten ...

>  
> Aber ansonsten ist mir vieles klarer dank Deiner Antwort!
> Dann versuche ich mich mal an der b).

Tu das!

>  
> Danke und Gruß vom
>  
> congo.

Zurück

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]