www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Fehler 2. Art berechnen
Fehler 2. Art berechnen < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fehler 2. Art berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:39 Do 09.02.2012
Autor: sh4nks

Aufgabe
Ab T > 53,2 wird H Null (Varianz höchstens 40) bei einem Chi- Quadrat- Test für Varianz verworfen.
Stichprobenlänge n= 35, Erwartungswert 500, Varianz 55.

Wie berechnet man (mit Normalapproximation) den Fehler 2. Art?

Ich bin komm nicht drauf, wie man das Problem formal beschreiben muss. Die Bedingung ist ja, dass die Testgröße kleiner gleich der Ablehnungsschranke 53,2 ist. Aber wie beschreibe ich das Problem genau bzw. löse ich die Aufgabe?

Gruß, Markus

        
Bezug
Fehler 2. Art berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:57 Do 09.02.2012
Autor: Walde

Hi Markus,

ein Fehler 2. Art findet ja statt, wenn [mm] H_0 [/mm] angenommen wird, d.h. die Teststatistik im Annahmebereich landet, obwohl [mm] H_0 [/mm] nicht zutrifft. Hier ist, wie du schon festgestellt hast, [mm] P(T\le [/mm] 53,2) gesucht, aber unter der Bedingung, dass [mm] H_1: \sigma^2=55 [/mm] zutrifft. Um die W'keit zu bestimmen, muß man wissen, wie T unter [mm] H_1 [/mm] jetzt verteilt ist (um dann zB in einer entsprechenden Tabelle nachzukucken). Hier sollst du die W'keit dann mit der Standardnormalverteilung approximieren.

Allerdings ist mir leider grad selbst nicht ganz klar, warum hier der Erwartungswert mit 500 angegeben ist. Ich dachte bei einem [mm] \chi^2- [/mm] Test ist die Teststatistik (unter [mm] H_0) [/mm] auch [mm] \chi^2 [/mm] verteilt. Dann müsste aber doch der Erwartungswert bei E(T)=n liegen (unter [mm] H_0), [/mm] der Anzahl der Freiheitsgrade, oder? Soll man das unter [mm] H_1 [/mm] nun mit 500 ansetzen, ich bin ebenfalls verwirrt, deswegen bleibt die Frage mal unbeantortet.

EDIT: Kann es sein, dass du hier nur einen Teil der Aufgabe gepostet hast und den Erwartungswert 500 für einen anderen Aufgabenteil brauchst oder halt generell noch mehr zur Aufgabe sagen kannst?

Lg walde

Bezug
                
Bezug
Fehler 2. Art berechnen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:32 Fr 10.02.2012
Autor: sh4nks

Hi,

danke erstmal. Soweit war mir das grob schon klar, aber ich weiß nicht, wie ich den Ausdruck T<53,2 so umforme, dass ich in einer Tabelle für Standardnormalverteilungen nachschlagen kann. T=s²/sigma², sigma² rüberbringen und dann irgendwie auf N(0,1) normieren? Oder ganz anders?

Bezug
                        
Bezug
Fehler 2. Art berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 10.02.2012
Autor: Walde

Hi Markus,

sei nicht so sparsam mit den Info's über die Aufgabe. Mir zumindest würde das glaube ich helfen.

Aber hier mal meine Ideen, kein Anspruch auf Richtigkeit. Da hier ein Erwartungswert angegeben ist, das soll wohl der Erwartungswert der (normalverteilten) Daten sein, gehe ich davon aus, dass er nicht aus der Stichprobe geschätzt wurde. Dann sieht die Teststatistik so aus [mm] T=\bruch{nS^2}{\sigma^2}, [/mm] mit [mm] S^2=\bruch{1}{n}\summe_{i=1}^{n}(X_i-\mu)^2 [/mm] und die [mm] X_i [/mm] sind die Daten. Und hier dann konkret, unter [mm] H_0: T=\bruch{35*S^2}{40}\sim\chi^2(35). [/mm] Jetzt geht man aber von [mm] H_1:\sigma^2=55 [/mm] aus. Dann ist [mm] T=\bruch{35*S^2}{40}\not\sim\chi^2(35). [/mm] Aber [mm] T'=\bruch{35*S^2}{55} [/mm] wäre es.
Also [mm] T=\bruch{35*S^2}{40}=\bruch{55}{40}*\bruch{35*S^2}{55}=\bruch{55}{40}*T'. [/mm]

Wenn nun gesucht ist [mm] P_{H_1}(T\le 53,2)=P_{H_1}(\bruch{55}{40}T'\le 53,2)=P_{H_1}(T'\le\bruch{40}{55}*53,2) [/mm] hat man wieder eine [mm] \chi^2 [/mm] Verteilung mit 35 FGn.
In der []Wikipedia hab ich nachgelesen, dass für [mm] n\ge [/mm] 30 und wenn [mm] X\sim\chi^2(n), [/mm] dann ist (nährungsweise) [mm] Y=\wurzel{2*X}-\wurzel{2n-1}\sim\mathcal{N}(0,1). [/mm]  Dann wäre also mein Vorschlag, du transformierst T' auf die Gestalt von Y und kuckst mal nach, ob was Gescheites rauskommt.

LG walde

Bezug
        
Bezug
Fehler 2. Art berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Di 14.02.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]