Fermat Kurve, Multiplizitäten < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 12:45 Sa 04.12.2010 | Autor: | clee |
Aufgabe | Es sei [mm] $X_d$ [/mm] die durch [mm] \{F(x,y,z)=x^d+y^d+z^d=0\} [/mm] gegebene glatte ebene projektive Kurve. Man nennt [mm] $X_d$ [/mm] die Fermat-Kurve vom Grad $d$. Wir haben gesehen, dass jede Gerade in [mm] \IP_2 [/mm] biholomorph zu [mm] \overline{\IC} [/mm] ist. Wir betrachten die Gerade [mm] \{z=0\}\subset \IP_2. [/mm] Es sei [mm] \pi:X_d\to \overline{\IC} [/mm] die durch [mm] [x:y:z]\mapsto[x:y:0] [/mm] induzierte Abbildung. (wobei [mm] \overline{\IC}:=\IC\cup\{\infty\} [/mm] sein soll)
a) Zeigen sie: [mm] \pi:X_d\to \overline{\IC} [/mm] ist eine wohldefinierte holomorphe Abbildung vom Grad $d$.
b) Finden sie alle Punkte [mm] R_\pi \subset X_d [/mm] und [mm] \pi(R_\pi)\subset\overline{\IC}. [/mm] (wobei [mm] R_\pi:= \{x\in X_d|mult_p(\pi)>1\} [/mm] die Menge der Verzweigungspunkte von [mm] \pi [/mm] ist) |
[mm] \pi [/mm] sollte ja folgene abbildung sein:
[mm] \pi:X_d\to \{z=0\} \to \overline{\IC} [/mm] mit [mm] [x:y:z]\mapsto[x:y:0]\mapsto\begin{cases} \bruch{y}{x}, & \mbox{für } x\not=0 \\ \infty, & \mbox{für } x=0 \end{cases}
[/mm]
a)
i) für wohldefiniertheit sollte ja nur zu zeigen sein, dass [mm] $\pi([x:y:z])=\pi([\lambda x:\lambda [/mm] y: [mm] \lambda [/mm] z])$ gilt, was ja trivial ist. stimmt das oder ist noch mehr zu zeigen?
ii) damit [mm] \pi [/mm] holomorph ist müsste ich nurnoch zeigen, dass [mm] X_d\to \{z=0\} [/mm] mit [mm] [x:y:z]\mapsto[x:y:0] [/mm] holomorph ist, da ich schon weiß, dass [mm] \{z=0\} \to \overline{\IC} [/mm] mit [mm] [x:y:0]\mapsto\begin{cases} \bruch{y}{x}, & \mbox{für } x\not=0 \\ \infty, & \mbox{für } x=0 \end{cases} [/mm] eine holomorphe abbildung ist. hier wäre ein tipp nich schlecht ... muss ich das in karten nachrechnen oder geht das auch mit einem einfachen argument?
iii) so, und jetzt kommt das hauptproblem: der grad, welcher ja als [mm] $deg(f):=\summe_{x\in \pi^{-1}(y)}mult_x(\pi)$ [/mm] für ein [mm] y\in \overline{\IC}.
[/mm]
für $y=0$ hieße das ja folgendes:
[mm] \pi^{-1}(0)=\{[1:0:z]|1^d+z^d=0\}=\{[1:0:-exp(\bruch{2ki\pi}{d})]|0
für den fall $d$ ungerade sind das ja d verschiedene punkte in [mm] \IP_2. [/mm] damit grad $d$ rauskommt müssen die nun alle multiplizität 1 haben. wie aber rechne ich die multiplizitäten aus? ich habe mir überlegt mit karten [mm] \psi:X_d\supset U\to\IC [/mm] mit [mm] [x:y:z]\mapsto\begin{cases} \bruch{y}{x}, & \mbox{für } x\not=0 \\ \infty, & \mbox{für } x=0 \end{cases} [/mm] und [mm] \phi:\overline{\IC}\supset\IC\to\IC [/mm] mit [mm] \phi:=id [/mm] zu wählen. dann müsste ich ja zeigen, dass [mm] \phi\circ\pi\circ\psi^{-1}(z)=\phi\circ\pi(z)=z [/mm] gilt für punkte nahe [mm] [1:0:-exp(\bruch{2ki\pi}{d})]. [/mm] macht man das so? und falls ja wie?
b) sollte ich ja hinbekommen wenn ich das mit dem multiplizitäten ausrechnen verstanden habe.
danke für hinweise
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:16 So 05.12.2010 | Autor: | clee |
frage ist immernoch aktuell!
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 13:19 Mo 06.12.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|