www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Politik/Wirtschaft" - First-order Approach
First-order Approach < Politik/Wirtschaft < Geisteswiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

First-order Approach: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:33 Fr 01.02.2013
Autor: JanSurf

Aufgabe
Übungsaufgabe 6 (Moral Hazard bei stetigem Einsatz)

Nach einer unternehmensinternen Umstrukturierung schwankt der Bruttogewinn des Europa-
Geschäfts nun zwischen den beiden Niveaus [mm] x_{1} [/mm] und [mm] x_{2} [/mm] , mit [mm] x_{1} [/mm] > [mm] x_{2} [/mm] . Zudem wurde Paul bewusst,
dass Albert seinen Arbeitseinsatz aus dem (normierten) stetigen Intervall e [mm] \in [/mm] (0;1) wählen kann. Die
Wahrscheinlichkeit für den Eintritt des hohen Ergebnisses  [mm] x_{1} [/mm] hängt vom Arbeitseinsatz des A wie
folgt ab: [mm] p(x_{1}|e)= p_{1}(e)= e^{2}. [/mm] Das geringere Ergebnis [mm] x_{2} [/mm] tritt mit der entsprechenden
Gegenwahrscheinlichkeit [mm] p_{2}(e)= [/mm] 1 - [mm] e^{2} [/mm] auf.
Wieder wird überlegt, welchen Lohn w > 0 Albert bekommen soll. Sein Disnutzen aus dem Arbeitseinsatz lautet nun v(e) = 2e. Zudem wird sein Reservationsnutzen [mm] \underline{U} [/mm] auf 0 normiert.

a) Gehen Sie zunächst von symmetrischer Information zwischen P und A aus und stellen Sie für
diese Situation das Maximierungsproblem des P auf. Wie lauten die Optimalitätsbedingungen,
die den Vertrag in diesem Umfeld beschreiben?

b) Sei nun der Arbeitseinsatz e des A von P nicht beobachtbar. Wie lautet nun das
Maximierungsproblem des P? Welche Technik kann man zu dessen Lösung grundsätzlich
benutzen? Ist die Anwendung dieser Technik hier zulässig?

c) Verwenden Sie die unter b) genannte Technik zur Bestimmung derjenigen Bedingungen, die den
optimalen Vertrag bei asymmetrischer Information kennzeichnen. Was folgt daraus für die
Struktur des optimalen Vertrags im Vergleich zur Situation unter a)? Wieso kommt es zu diesem
Ergebnis?

Alberts Nutzen aus dem Lohn: U(w)= [mm] \wurzel{w} [/mm]

Paul ist Risikoneutral.

Meine Frage bezieht sich nur auf einen kleinen Teil der Aufgabe b).

Die Technik zur Bildung einer Anreizkompatibilitätsbedingung ist die Maximierung von Alberts Nutzen bezüglich des Einsatzes.

also: e [mm] \in [/mm] arg [mm] max_{e} [/mm] = [mm] e^{2}\wurzel{w_{1}}+(1-e^{2})\wurzel{w_{2}}-2e [/mm]

Diese Technik ist jedoch nur zulässig, wenn Konkavität in e gegeben ist. Hessematrix negativ definit? Wie überprüfe ich das?

Vielen Dank

Jan

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
First-order Approach: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Do 07.02.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Politik/Wirtschaft"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]